Targeting Uropathogenic Escherichia coli, a Virulent Stains of Urinary Tract Infection: In silico Study of Aloe Barbadensis Miller Phytoconstituents

Mikidadi S. Gurisha *

Department of Physics, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma, Tanzania.

P.V.Kanaka Rao

Department of Physics, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma, Tanzania.

Laxmikanth Cherupally

Department of Physics, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma, Tanzania.

*Author to whom correspondence should be addressed.


Abstract

The most frequent pathogen linked to the development of UTIs is Uropathogenic Escherichia coli (UPEC). Thus, inhibiting the UPEC protein target (PDB ID 8BVD) would be a viable treatment approach. This study used molecular docking and dynamics to investigate Aloe barbadensis miller antibacterial activity against UPEC bacteria. The Phytoconstituents of Aloe barbadensis miller such as aloe-emodin, cholic acid, and flavonol were downloaded from the PubChem database with nitrofurantoin as a control drug and investigated against the target molecule. Some potential parameters such as docking scores, absorption, distribution, metabolism, excretion, toxicity (ADMET), oral bioavailability, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bonding, radius of gyration, and total energy of the system were examined. According to the docking score results, all ligands showed excellent candidacy as an inhibitor of the 8BVD molecule. The score order was aloe-emodin (-6.6 kcal/mol), cholic acid (-6.8 kcal/mol), flavonol (-6.8 kcal/mol) and nitrofurantoin (-6.1 kcal/mol). Every ligand seemed to possess favorable drug-likeness characteristics and oral bioavailability. Molecular dynamics investigation showed that every ligand demonstrated a strong candidate for an inhibitor in its vicinity of 20 ns. Contrary to cholic acid, which appears to be more stable, aloe-emodin and flavonol showed comparatively high fluctuations. The results of this study imply that the chosen Phytoconstituents may be employed as 8BVD protein inhibitors to combat urinary tract infections. Nevertheless, the room is still available for more research to validate the particular mechanism of UTI treatment through clinical and experimental methods.   

Keywords: Molecular docking, Molecular dynamics, Phytoconstituents, Uropathogenic, Escherichia coli, Virulent strain


How to Cite

S. Gurisha, M., Rao, P. and Cherupally, L. (2024) “Targeting Uropathogenic Escherichia coli, a Virulent Stains of Urinary Tract Infection: In silico Study of Aloe Barbadensis Miller Phytoconstituents”, Journal of Pharmaceutical Research International, 36(7), pp. 79–95. doi: 10.9734/jpri/2024/v36i77540.

Downloads

Download data is not yet available.

References

Beda John Mwang'onde, Josefine Innocent Mchami. The aetiology and prevalence of urinary tract infections in Sub-Saharan Africa: A Systematic Review, J. Health Biol Sci. 2022;10(1):1-7.

Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. Urinary Tract Infections Caused by Uropathogenic Escherichia coli Strains-New Strategies for an Old Pathogen. Microorganisms. 2022 Jul 14;10 (7):1425. DOI: 10.3390/microorganisms10071425

Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015;13:269–284. DOI: 10.1038/nrmicro3432

Mousavifar L, Sarshar M, Bridot C. Scribano D, Ambrosi C, Palamara AT, Vergoten G, Roubinet B, Landemarre L, Bouckaert J. et al. Insightful Improvement in the Design of Potent Uropathogenic E. coli FimH Antagonists. Pharmaceutics. 2023; 15(2):527. DOI: 10.3390/pharmaceutics15020527

Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol. 2017;(8):1566. DOI: 10.3389/fmicb.2017.01566.

Seifu WD, Gebissa AD. Prevalence and antibiotic susceptibility of uropathogens from cases of urinary tract infections (UTI) in shashemene referral hospital, Ethiopia. BMC Infect Dis. 2018;18(1): 30. DOI: 10.1186/s12879-017-2911-x.

Chhaya Shah, Ratna Baral, Bijay Bartaula and Lok Bahadur Shrestha. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance, BMC Microbiology Journal. 2019;19 (204). Available:https://doi.org/10.1186/s12866-019-1587-3

Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol Immunol. 2019;108: 56-67. Available:https://doi.org/10.1016/j.molimm.2019.02.007

Haidan Yuan, Qianqian Ma, Li Ye and Guangchun Piao. The traditional medicine and modern medicine from natural products, review, MDPI Journal of Molecules. 2016;21:559. DOI: 10.3390/molecules21050559

Fatriansyah JF, Rizqillah RK, Yandi MY, Fadilah, Sahlan M. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. J King Saud Univ Sci. 2022;34(1):101707. DOI: 10.1016/j.jksus.2021.101707

Preman Geetika, Muskaan Mulani, Ayesha Bare, Khushboo Relan, Leebah Sayyed, Vikas Jha, Kavita Pandey. Screening of phytochemicals for anti-Tubercular potential using molecular docking approach. J Tuberc. 2022;5(1):1030.

Bittner Fialová S, Rendeková K, Mučaji P, Nagy M, Slobodníková L. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering european legislation and folk medicine-a review. Int J Mol Sci. 2021;22(19):10746. DOI: 10.3390/ijms221910746

Mehdi Goudarzi, Saeedeh Ghafari, Masoumeh Navidinia and Hadi Azimi. Aloe vera gel: effective therapeutic agent against extended-spectrum β-lactamase producing escherichia coli isolated from patients with urinary tract infection in Tehran-Iran, Journal of Pure and Applied Microbiology. 2018;11(3):1401-1408. Available:https://dx.doi.org/10.22207/JPAM.11.3.22

Maan AA, Nazir A, Khan MKI, Ahmad T, Zia R, Murid M, Abrar M. The therapeutic properties and applications of Aloe vera : A review. Journal of Herbal Medicine. 2018;12:1-10. DOI:10.1016/j.hermed.2018.01.002

Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 2020 Mar 27;83(3):770-803. doi: 10.1021/acs.jnatprod.9b01285.

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1): D1373–D1380. Available:https://doi.org/10.1093/nar/gkac956

Liebschner D., Afonine P.V., Baker M.L., Bunkóczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019;D 75:861–877. DOI: 10.1107/S2059798319011471

Gerard J, Kleywegt, Alwyn Jones T. Model building and refinement practice. In Methods in Enzymology. 1997;277:208-230. Available:https://doi.org/10.1016/S0076-6879(97)77013-7

Abe CM, Salvador A, Falsetti IN, Blanco E, Blanco M. Uropathogenic Escherichia coli UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunol. Med. Microbiol. 2008;52:397–406. DOI: 10.1111/j.1574-695X.2008.00388.x

Gurisha MS, Rao PVK, Cherupally L. (2024) Phytochemicals of Aloe barbadensis miller as Potential Inhibitors of Uropathogenic Escherichia coli for Urinary Tract Infection Therapy: An in Silico Approach. Open Jour nal of Biophysics. 2024;14:99-120. Available:https://doi.org/10.4236/ojbiphy.2024.142006

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2024;25(13): 1605-1612. Available:https://doi.org/10.1002/jcc.20084

Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry.2021;273–343. DOI:10.1016/bs.pmch.2021.01.004

Huang, C. C.; Couch, G. S.; Pettersen, E. F.; Ferrin, T. E. Pac Symp Biocomput 1996, 1, 724

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016 May;11(5):905-19. doi: 10.1038/nprot.2016.051

David Camp, Agatha Garavelas, and Marc Campitelli. Analysis of physicochemical properties for drugs of natural origin, J. Nat. Prod. 2015;78(6):1370–1382.DOI: 10.1021/acs.jnatprod.5b00255

Honório KM, Moda TL, Andricopulo AD. Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med Chem. 2013;9(2):163-76. DOI: 10.2174/1573406411309020002.

Jia C-Yang, Li J-Yi, Hao G-Fei, Yang G-Fu . A drug-likeness toolbox facilitates ADMET study in drug discovery, Drug Discovery Today; 2019.

Available:https://doi.org/10.1016/j.drudis.2019.10.014

Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015 May 14; 58(9):4066-72. doi: 10.1021/acs.jmedchem.5b00104.

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7 (42717).Available:https://doi.org/10.1038/srep42717

Udugade SB, Doijad RC, Udugade BV. In silico evaluation of pharmacokinetics, drug-likeness and medicinal chemistry friendliness of momordicin1: An active chemical constituent of momordica charantia, J Adv Sci Res. 2019;10(3):222-229.

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: Fast, flexible, and free. J Comput Chem. 2005;26(16):1701-1718.DOI: 10.1002/jcc.20291

Salaria D, Rajan R, Mehta J, Awofisayo O,Olatomide A. Fadare,OA, Balvir K, Renato AC, Shikha RC, Neha K, Eun HC, Nagendra KK. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PLoS One. 2022;17(3):1-20. Available:https://doi.org/10.1371/journal.pone.0265420

Walters JP, Rogers CM, Crago SP. Maestro software and application performance, Conference Paper, GOMACTech-14 conference; 2014.

Wu J, Yu TT, Kuppusamy R, Hassan MM, Alghalayini A, Cranfield CG, Willcox MDP.; Black DS, Kumar N. Cholic acid-based antimicrobial peptide mimics as antibacterial agents. Int. J. Mol. Sci.2022; 23:4623. Available:https://doi.org/10.3390/ijms23094623

Hu Q, Feng M, Lai L, Pei J. Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks. Front Genet. 2018;27 (9):585. DOI: 10.3389/fgene.2018.00585

Rao P, Shukla A, Parmar P, Rawal RM, Patel B, Saraf M, Goswami D. Reckoning a fungal metabolite, pyranonigrin A as a potential main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophys Chem. 2020;264: 106425. DOI: 10.1016/j.bpc.2020.106425

Dong X, Zeng Y, Liu Y, You L, Yin X, Fu J, Ni J. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother Res. 2020;34 (2):270-281. DOI: 10.1002/ptr.6532.

Tripathi Kishua, Kumar T. Siva. Antibacterial activity of organometallic complexes of cholic acid, Dige J of Nanomat and Biostr. 2010;5(3):763-770.

Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5:47. DOI: 10.1017/jns.2016.41

Burak M, Imen Y. Flavonoids and their antioxidant properties. Turkiye Klin Tip Bil Derg. 1999;19:296–304.

Madeddu F, Di Martino J, Pieroni M, Del Buono D, Bottoni P, Botta L, Castrignanò T, Saladino R. Molecular docking and dynamics simulation revealed the potential inhibitory activity of new drugs against human topoisomerase I receptor. Int. J. Mol. Sci. 2022;23:14652. Available:https://doi.org/10.3390/ ijms23231465

Mahdizade Ari M, Dashtbin S, Ghasemi F, Shahroodian S, kiani P, Bafandeh E, Darbandi T, Ghanavati R, Darbandi A. Nitrofurantoin: properties and potential in treatment of urinary tract infection: a narrative review. Front. Cell. Infect. Microbiol. 2023;13:1148603. DOI: 10.3389/fcimb.2023.1148603

Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nature Structural Biology. 2002;9:646–652.

Tomas Hansson, Chris Oostenbrink, WilfredF van Gunsteren. Molecular dynamics simulations. Current Opinion in Structural Biology. 2002;12(2):190–196. DOI:10.1016/s0959-440x(02)00308-1

Anwer K, Sonani R, Madamwar D, Singh P, Khan F, Bisetty K, Ahmad F, Hassan MI. Role of N-terminal residues on folding and stability of C-phycoerythrin: simulation and urea-induced denaturation studies, Journal of Biomol Structure Dynamics. 2015;33 (1):121-133.Available:https://doi.org/10.1080/07391102.2013.855144

Hubbard RE, Kamran Haider M. Hydrogen bonds in proteins: role and strength. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA; 2001.

Mohammad T, Siddiqui S, Shamsi A, Alajmi MF, Hussain A, Islam A, Ahmad F, Hassan MI. Virtual Screening Approach to Identify High-Affinity Inhibitors of Serum and Glucocorticoid-Regulated Kinase 1 among Bioactive Natural Products: Combined Molecular Docking and Simulation Studies. Molecules. 2020; 25(4):823. https://doi.org/10.3390/molecules25040823

Wade RC, Goodford PJ. The role of hydrogen-bonds in drug binding. Prog Clin Biol Res. 1989;289:433-44. PMID: 2726808.

Anusuya S, Velmurugan D, Gromiha MM. Identification of dengue viral RNA-dependent RNA polymerase inhibitor using computational fragment based approaches and molecular dynamics study. J. Biomol. Struct. Dyn. 2015;34(7):1512–1532.

Available:https://doi.org/10.1080/07391102.2015.1081620

Lobanov MY, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008;42:623–628.Available:https://doi.org/10.1134/S0026893308040195

Alfred Rudin, Phillip Choi. The Elements of Polymer Science & Engineering (Third Edition), Science Direct, Elsevier Inc; 2013.

Al-Karmalawy AA, Dahab MA, Metwaly AM, Elhady SS, Elkaeed EB, Eissa IH, Darwish KM. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor. Front Chem. 2021 May 4; 9:661230. DOI: 10.3389/fchem.2021.661230.

Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012; 3(4): 200. DOI: 10.4103/2231-4040.104709.