Improved Topical Antifungal Medication using Sertaconazole Bilosomes: In vitro Permeability, Cytotoxicity, and Clinical Assessment

Omar Magdy Eldemiri *

Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.

Germeen NS Girgis

Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.

Sara Hamdy Fouad

Department of Dermatology, Andrology and STDs, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.

Thanaa Mohamed Borg

Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.

*Author to whom correspondence should be addressed.


Objective: The purpose of the current study was to develop Sertaconazole bilosomes (SBs) with enhanced permeability, skin deposition, anti-fungal properties, and clinical efficacy.

Methods: By changing span 60 to cholesterol molar ratio, bile salt type, and concentration, 12 formulations of SBs were prepared using the thin film hydration method and characterized by particle size (PS), zeta potential (ZP), polydispersity index (PDI), % entrapment efficiency (% EE), and % cumulative drug released after 8h (% Q8h ) and 24h (% Q24h). The optimized formulation (SB 5) was incorporated into 1% Carbopol 940 hydrogel (SBG 5) and tested for ex-vivo permeability, skin deposition, and anti-fungal efficacy compared to the commercial formulation (Dermofix® cream) and sertaconazole alone hydrogel (SAG). A randomized controlled clinical trial of SBG 5 compared to Dermofix® cream and SAG was done on 30 patients diagnosed with Tinea corporis with a 4-week follow-up.

Results: SB 5 showed PS of 158 ± 6.4nm, ZP of −55 ± 1.7mV, PDI of 0.16 ± 0.01, % EE of 96 ± 3.4, % Q8h of  70.3 ± 3.6, and % Q24h of  97.2 ± 3.0. SBG 5 exhibited in vitro release after 24h (1.25 and 1.51-fold), skin permeability (1.6 and 2.3-fold), skin deposition (3.86 and 14.82-fold), and anti-fungal efficacy against Candida albicans (two and 1.44-fold) compared to Dermofix® cream and SAG respectively. Patients receiving SBG 5 exhibited a 1.25 and 1.8-fold higher recovery rate on days 14 and 21 respectively compared to Dermofix® cream, and a 4.5 and two-fold recovery rate on days 14 and 21 respectively compared to SAG.

Conclusion: Bilosomes could be utilized to enhance permeability, skin deposition, anti-fungal properties, and clinical efficacy of Sertaconazole.

Keywords: Sertaconazole, anti-fungal, bile salts, bilosome, permeability, topical, clinical

How to Cite

Eldemiri, O. M., Girgis, G. N., Fouad, S. H. and Borg, T. M. (2024) “Improved Topical Antifungal Medication using Sertaconazole Bilosomes: In vitro Permeability, Cytotoxicity, and Clinical Assessment ”, Journal of Pharmaceutical Research International, 36(7), pp. 96–117. doi: 10.9734/jpri/2024/v36i77541.


Download data is not yet available.


Piérard GE, Arrese JE, Piérard-Franchimont C. Treatment and prophylaxis of tinea infections. Drugs. 1996;52:209-24.

Kumar N, Goindi S. Statistically designed nonionic surfactant vesicles for dermal delivery of itraconazole: characterization and in vivo evaluation using a standardized Tinea pedis infection model. Int J Pharm. 2014;472(1-2):224-40.

Detandt M, Nolard N. Fungal contamination of the floors of swimming pools, particularly subtropical swimming paradises. Mycoses. 1995;38(11-12):509-13.

Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden Killers: Human Fungal Infections. Science Translational Medicine. 2012;4(165): 165rv 13-rv13.

Ekowati Y, Ferrero G, Kennedy MD, de Roda Husman AM, Schets FM. Potential transmission pathways of clinically relevant fungi in indoor swimming pool facilities. Int J Hyg Environ Health. 2018;221(8):1107-15.

Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis--dermatophytosis. Int J Pharm. 2012;437(1-2):277-87.

Branscomb R. The Dermatophytoses. Laboratory Medicine. 2005;36(8):496-500.

Barros M, Santos DA, Hamdan JS. Evaluation of susceptibility of Trichophyton mentagrophytes and Trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). J Med Microbiol. 2007;56(Pt 4):514-8.

Makimura K, Mochizuki T, Hasegawa A, Uchida K, Saito H, Yamaguchi H. Phylogenetic classification of Trichophyton mentagrophytes complex strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. Journal of Clinical Microbiology. 1998;36 (9):2629-33.

Santos D, Hamdan J. Evaluation of broth microdilution antifungal susceptibility testing conditions for Trichophyton rubrum. Journal of Clinical microbiology. 2005;43 (4):1917-20.

Torres J, Marquez M, Camps F. Sertaconazole in the treatment of mycoses: from dermatology to gynecology. Int J Gynaecol Obstet. 2000;71 Suppl 1:S3-20.

Pfaller MA, Sutton DA. Review of in vitro activity of sertaconazole nitrate in the treatment of superficial fungal infections. Diagn Microbiol Infect Dis. 2006;56(2):147-52.

Agut J, Palacín C, Sacristán A, Ortiz J. Inhibition of ergosterol synthesis by sertaconazole in Candida albicans. Arzneimittelforschung. 1992;42(5A):718-20.

Palacín C, Sacristán A, Ortiz JA. In vitro comparative study of the fungistatic and fungicidal activity of sertaconazole and other antifungals against Candida albicans. Arzneimittelforschung. 1992;42(5A):711-4.

Del Rosso JQ. Comprehensive management of patients with superficial fungal infections: the role of sertaconazole nitrate. Cutis. 2008;81(6 Suppl):4-18; quiz 9-20.

Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G. Sertaconazole: updated review of a topical antifungal agent. Expert Review of Anti-infective Therapy. 2005;3 (3):333-42.

Sanchez J. Sertaconazole, mechanism of action and pharmacokinetics. J Eur Acad Dermatol Venereol. 1993;2(Suppl 2):S71-6.

Guarro J, Figueras MJ, Cano J. Alterations Produced by Sertaconazole on the Morphology and Ultrastructure of Candida albicans: Sertaconazol-bedingte Veranderungen der Morphologie und Ultrastruktur von Candida albicans. Mycoses. 1989;32(6):283-95.

Agut J, Palacín C, Salgado J, Casas E, Sacristán A, Ortiz JA. Direct membrane-damaging effect of sertaconazole on Candida albicans as a mechanism of its fungicidal activity. Arzneimittelforschung. 1992;42(5A):721-4.

Savin R, Jorizzo J. The safety and efficacy of sertaconazole nitrate cream 2% for tinea pedis. CUTIS-NEW YORK-. 2006;78(4): 268.

Nasarre J, Umbert P, Herrero E, Roset P, Márquez M, Torres J, et al. Therapeutic efficacy and safety of the new antimycotic sertaconazole in the treatment of pityriasis versicolor. Arzneimittelforschung. 1992;42 (5A):764-7.

Borelli C, Klövekorn G, Ernst T-M, Bödeker R-H, Korting HC, Neumeister C. Comparative study of 2% sertaconazole solution and cream formulations in patients with tinea corporis, tinea pedis interdigitalis, or a corresponding candidosis. American journal of clinical dermatology. 2007;8:371-8.

Lopez-Montero E, Santos J-FRd, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C. Sertaconazole-Loaded Cyclodextrin–Polysaccharide Hydrogels as Antifungal Devices §. The Open Drug Delivery Journal. 2009;3(1).

Güng S. New formulation strategies in topical antifungal therapy; 2013.

Lee CM, Maibach HI. Deep percutaneous penetration into muscles and joints. Journal of pharmaceutical sciences. 2006; 95(7):1405-13.

Younes NF, Abdel-Halim SA, Elassasy AI. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization. Drug Deliv. 2018; 25(1): 1706-17.

Radwan SAA, ElMeshad AN, Shoukri RA. Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: design, optimization and ex vivo evaluation. Drug Dev Ind Pharm. 2017;43(8):1351- 65.

Esenturk I, Gumrukcu S, Özdabak Sert AB, Kök FN, Döşler S, Gungor S, et al. Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020;70(9):605-22.

Kumar L, Verma S, Bhardwaj A, Vaidya S, Vaidya B. Eradication of superficial fungal infections by conventional and novel approaches: a comprehensive review. Artificial Cells, Nanomedicine, and Biotechnology. 2014;42(1):32-46.

Imam SS, Gilani SJ, Zafar A, Jumah MNB, Alshehri S. Formulation of Miconazole-Loaded Chitosan-Carbopol Vesicular Gel: Optimization to In Vitro Characterization, Irritation, and Antifungal Assessment. Pharmaceutics. 2023;15(2).

Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015;485(1-2):329-40.

Janga KY, Tatke A, Balguri SP, Lamichanne SP, Ibrahim MM, Maria DN, et al. Ion-sensitive in situ hydrogels of natamycin bilosomes for enhanced and prolonged ocular pharmacotherapy: in vitro permeability, cytotoxicity and in vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1039-50.

Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discov Today. 2016;21(6):888-99.

Kaurav H, Tripathi M, Kaur SD, Bansal A, Kapoor DN, Sheth S. Emerging Trends in Bilosomes as Therapeutic Drug Delivery Systems. Pharmaceutics. 2024;16(6):697.

Ammar HO, Mohamed MI, Tadros MI, Fouly AA. High frequency ultrasound mediated transdermal delivery of ondansetron hydrochloride employing bilosomal gel systems: ex-vivo and in-vivo characterization studies. Journal of Pharmaceutical Investigation. 2020;50: 613-24.

Wang L, Huang X, Jing H, Ma C, Wang H. Bilosomes as effective delivery systems to improve the gastrointestinal stability and bioavailability of epigallocatechin gallate (EGCG). Food research international. 2021;149:110631.

Chai C, Park J. Food liposomes: Structures, components, preparations, and applications. Food Chemistry. 2024;432: 137228.

Saifi Z, Rizwanullah M, Mir SR, Amin S. Bilosomes nanocarriers for improved oral bioavailability of acyclovir: A complete characterization through in vitro, ex-vivo and in vivo assessment. Journal of Drug Delivery Science and Technology. 2020;57.

Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech. 2013;14(1):133-40.

Elkomy MH, Alruwaili NK, Elmowafy M, Shalaby K, Zafar A, Ahmad N, et al. Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation. Pharmaceutics. 2022;14(3): 563.

Chng C-P, Hsia KJ, Huang C. Modulation of lipid vesicle–membrane interactions by cholesterol. Soft Matter. 2022;18(40):7752-61.

Zarenezhad E, Marzi M, Abdulabbas HT, Jasim SA, Kouhpayeh SA, Barbaresi S, et al. Bilosomes as nanocarriers for the drug and vaccine delivery against gastrointestinal infections: Opportunities and challenges. Journal of Functional Biomaterials. 2023;14(9):453.

Aziz DE, Abdelbary AA, Elassasy AI. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: in vitro characterization, ex vivo permeation and in vivo skin deposition study. J Liposome Res. 2019;29(1):73-85.

Manconi M, Sinico C, Caddeo C, Vila AO, Valenti D, Fadda AM. Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin. Int J Pharm. 2011;412(1-2):37-46.

Abdellatif MM, Khalil IA, Khalil MAF. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int J Pharm. 2017;527(1-2):1-11.

Manjunath K, Venkateswarlu V, Hussain A. Preparation and characterization of nitrendipine solid lipid nanoparticles, Pharmazie, 66, 178-186 (2011).

Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. International Journal of Pharmaceutics. 1989;51(1):9-17.

Dressman JB, Fleisher D, Amidon GL. Physicochemical Model for Dose-Dependent DrugAbsorption. Journal of Pharmaceutical Sciences. 1984;73(9): 1274-9.

Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society. 1897;19(12): 930-4.

Gencturk A, Kahraman E, Güngör S, Özhan G, Özsoy Y, Sarac AS. Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artificial Cells, Nanomedicine, and Biotechnology. 2017;45(3):655-64.

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217-23.

Elmoghayer ME, Saleh NM, Abu H, II. Enhanced oral delivery of hesperidin-loaded sulfobutylether-beta-cyclodextrin/ chitosan nanoparticles for augmenting its hypoglycemic activity: in vitro-in vivo assessment study. Drug Deliv Transl Res. 2024;14(4):895-917.

Gabr YA, Girgis GNS, El-Sabbagh HM. Surface-Decorated Nanocarrier as a Targeted Drug Delivery Cargo to Folate Receptor-Overexpressing Cells for Enhancing Anti-cancer and Anti-inflammatory Activity. Journal of Pharmaceutical Research International. 2023;35(18):41-74.

Younes NF, Abdel-Halim SA, Elassasy AI. Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm. 2018;553(1-2):386-97.

El-Nabarawi M, Khalil I, Saad R. Impact of hydrophilic polymer solubilization on bioavailability enhancement of repaglinide by solid dispersion. Inven Rapid Pharm Tech. 2016;3:1-12.

Bsieso EA, Nasr M, Moftah NH, Sammour OA, Gawad NAAE. Could nanovesicles containing a penetration enhancer clinically improve the therapeutic outcome in skin fungal diseases? Nanomedicine. 2015;10 (13):2017-31.

Duvnjak Romić M, Sušac A, Lovrić J, Cetina-Čižmek B, Filipović-Grčić J, Hafner A. Evaluation of stability and in vitro wound healing potential of melatonin loaded (lipid enriched) chitosan based microspheres. Acta Pharmaceutica. 2019;69(4):635-48.

Zhu W, Guo C, Yu A, Gao Y, Cao F, Zhai G. Microemulsion-based hydrogel formulation of penciclovir for topical delivery. Int J Pharm. 2009;378(1-2):152-8.

Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian Journal of Pharmaceutical Sciences. 2013;8(6):336-45.

Sahoo S, Pani NR, Sahoo SK. Effect of microemulsion in topical sertaconazole hydrogel: in vitro and in vivo study. Drug Deliv. 2016;23(1):338-45.

R As, Sirivat A, Vayumhasuwan P. Viscoelastic properties of Carbopol 940 gels and their relationships to piroxicam diffusion coefficients in gel bases. Pharm Res. 2005;22(12):2134-40.

Shirsand S, Para M, Nagendrakumar D, Kanani K, Keerthy D. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int J Pharm Investig. 2012;2(4):201-7.

Tavakoli N, Taymouri S, Saeidi A, Akbari V. Thermosensitive hydrogel containing sertaconazole loaded nanostructured lipid carriers for potential treatment of fungal keratitis. Pharm Dev Technol. 2019;24 (7):891-901.

Trombino S, Russo R, Mellace S, Varano GP, Laganà AS, Marcucci F, et al. Solid lipid nanoparticles made of trehalose monooleate for cyclosporin-A topic release. Journal of Drug Delivery Science and Technology. 2019;49:563-9.

Garg BJ, Garg NK, Beg S, Singh B, Katare OP. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: formulation optimization, in vitro evaluation and preclinical assessment. J Drug Target. 2016;24(3):233-46.

Majumdar S, Srirangam R. Solubility, Stability, Physicochemical Characteristics and In Vitro Ocular Tissue Permeability of Hesperidin: A Natural Bioflavonoid. Pharmaceutical Research. 2008;26(5): 1217-25.

Bikkad ML, Nathani AH, Mandlik SK, Shrotriya SN, Ranpise NS. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery. J Liposome Res. 2014;24(2):113-23.

Barot BS, Parejiya PB, Patel HK, Gohel MC, Shelat PK. Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech. 2012;13(1):184-92.

Abdellatif MM, Elakkad YE, Elwakeel AA, Allam RM, Mousa MR. Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment. Saudi Pharm J. 2021;29(11):1238- 49.

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. JNCI: Journal of the National Cancer Institute. 1990;82 (13):1107-12.

Ruocco E, Baroni A, Donnarumma G, Ruocco V. Diagnostic procedures in dermatology. Clin Dermatol. 2011;29(5): 548-56.

Andrews MD, Burns M. Common tinea infections in children. Am Fam Physician. 2008;77(10):1415-20.

Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. 2016;513(1-2):688-96.

Ammar HO, Mohamed MI, Tadros MI, Fouly AA. Transdermal Delivery of Ondansetron Hydrochloride via Bilosomal Systems: In Vitro, Ex Vivo, and In Vivo Characterization Studies. AAPS PharmSciTech. 2018;19(5):2276-87.

Zhang J, Xue R, Ong WY, Chen P. Roles of cholesterol in vesicle fusion and motion. Biophys J. 2009;97(5):1371-80.

Janga KY, Jukanti R, Velpula A, Sunkavalli S, Bandari S, Kandadi P, et al. Bioavailability enhancement of zaleplon via proliposomes: Role of surface charge. Eur J Pharm Biopharm. 2012;80(2):347-57.

Kakkar S, Kaur IP. Spanlastics--a novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011;413(1-2):202-10.

El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1-2): 164-72.

Abdelbary G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol. 2011;16(1):44-56.

Abdelbary GA, Aburahma MH. Oro-dental mucoadhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain. J Liposome Res. 2015;25 (2):107-21.

Kunieda H, Ohyama K-i. Three-phase behavior and HLB numbers of bile salts and lecithin in a water-oil system. Journal of Colloid and Interface Science. 1990; 136(2):432-9.

Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta pol pharm. 2010;67(3):283-90.

Al-Mahallawi AM, Khowessah OM, Shoukri RA. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: in-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int J Pharm. 2014;472(1-2):304-14.

van den Bergh BAI, Wertz PW, Junginger HE, Bouwstra JA. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. International Journal of Pharmaceutics. 2001;217(1):13-24.

Basha M, Abd El-Alim SH, Shamma RN, Awad GE. Design and optimization of surfactant-based nanovesicles for ocular delivery of Clotrimazole. J Liposome Res. 2013;23(3):203-10.

Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GA. Phospholipid based colloidal poloxamer-nanocubic vesicles for brain targeting via the nasal route. Colloids Surf B Biointerfaces. 2012; 100:146-54.

Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GA. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J Liposome Res. 2012;22(4):336-45.

Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomedicine. 2011;6: 1155-66.

Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F, et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm. 2009;376(1-2):153-60.

Niu M, Tan Y, Guan P, Hovgaard L, Lu Y, Qi J, et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int J Pharm. 2014;460(1-2):119-30.

Shamma RN, Aburahma MH. Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia. Int J Nanomedicine. 2014;9:5449-60.

Mohsen AM, Asfour MH, Salama AAA. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug Dev Ind Pharm. 2017;43(12):2043-54.

Feng C, Li X, Dong C, Zhang X, Zhang X, Gao Y. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer. Drug Des Devel Ther. 2015; 9:4613-20.

Li H, Liu Y, Zhang Y, Fang D, Xu B, Zhang L, et al. Liposomes as a Novel Ocular Delivery System for Brinzolamide: In Vitro and In Vivo Studies. AAPS PharmSciTech. 2016;17(3):710-7.

Sinico C, Valenti D, Manconi M, Lai F, Fadda AM. Cutaneous delivery of 8-methoxypsoralen from liposomal and niosomal carriers. Journal of Drug Delivery Science and Technology. 2006;16(2):115-20.

Kawano K, Onose E, Hattori Y, Maitani Y. Higher Liposomal Membrane Fluidity Enhances the in Vitro Antitumor Activity of Folate-Targeted Liposomal Mitoxantrone. Molecular Pharmaceutics. 2009;6(1):98-104.

Salem HF, Nafady MM, Ali AA, Khalil NM, Elsisi AA. Evaluation of Metformin Hydrochloride Tailoring Bilosomes as an Effective Transdermal Nanocarrier. Int J Nanomedicine. 2022;17:1185- 201.

Zafar A, Alruwaili NK, Imam SS, Hadal Alotaibi N, Alharbi KS, Afzal M, et al. Bioactive Apigenin loaded oral nano bilosomes: Formulation optimization to preclinical assessment. Saudi Pharm J. 2021;29(3):269-79.

Gupta Y, Jain A, Jain P, Jain SK. Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target. 2007;15 (3):231-40.

Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics. 2000;50(1):161- 77.

Lim WM, Rajinikanth PS, Mallikarjun C, Kang YB. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system. Int J Nanomedicine. 2014; 9:2117-26.

Khalil RM, Abdelbary A, Kocova El-Arini S, Basha M, El-Hashemy HA. Evaluation of bilosomes as nanocarriers for transdermal delivery of tizanidine hydrochloride: in vitro and ex vivo optimization. J Liposome Res. 2019;29(2):171-82.

Elsherif NI, Shamma RN, Abdelbary G. Terbinafine Hydrochloride Trans-ungual Delivery via Nanovesicular Systems: In Vitro Characterization and Ex Vivo Evaluation. AAPS PharmSciTech. 2017;18 (2):551-62.

Aggarwal A, Jindal P. Modification of crystallization behaviour of sertaconazole by preparing its solid dispersions. Journal of Pharmacy and Allied Health Sciences. 2014;4(1):1.

Mokale V, Patil H, Patil A, Shirude P, Naik J, Naik B. Formulation and optimisation of famotidine proniosomes: an in vitro and ex vivo study. Journal of Experimenta Nanoscinece. 2015;11.

El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Bilosomes as a novel carrier for the cutaneous delivery for dapsone as a potential treatment of acne: preparation, characterization and in vivo skin deposition assay. J Liposome Res. 2020;30(1):1-11.

Shreya AB, Managuli RS, Menon J, Kondapalli L, Hegde AR, Avadhani K, et al. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations. J Liposome Res. 2016;26 (3):221-32.

Gaba B, Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Delivery. 2015;22(6):691-700.

Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci. 2012; 4(1):2-9.

Muzzalupo R, Tavano L, Cassano R, Trombino S, Ferrarelli T, Picci N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur J Pharm Biopharm. 2011;79 (1):28-35.

Weng HJ, Tsai TF. ABCB1 in dermatology: roles in skin diseases and their treatment. J Mol Med (Berl). 2021; 99(11):1527-38.

Devi M KS, Mahadevan N. Amphotericin-B loaded vesicular systems for the treatment of topical fungal infection. Int J Rec Adv Pharm Res. 2011;4:37– 46.

Taudorf EH, Jemec GBE, Hay RJ, Saunte DML. Cutaneous candidiasis - an evidence-based review of topical and systemic treatments to inform clinical practice. J Eur Acad Dermatol Venereol. 2019;33(10):1863-73.

Rao SH, Bhalekar MR, Kelkar SH, Godbole SS, Kharche RA. Testing the Efficacy of Transungual Drug Delivery System (Nail Lacquer) Containing Terbinafine Against Aspergillus brasiliensis for the Topical Treatment of Onychomycosis. bioRxiv. 2022:2022.02. 03.478980.

Manikandan P, Varga J, Kocsubé S, Revathi R, Anita R, Dóczi I, et al. Keratitis caused by the recently described new species Aspergillus brasiliensis: two case reports. Journal of Medical Case Reports. 2010;4(1):68.

Murphy A, Kavanagh K. Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology. Enzyme and Microbial Technology. 1999; 25(7):551-7.

Papadimitriou M, Hatzidaki E, Papasotiriou I. Linearity Comparison of Three Colorimetric Cytotoxicity Assays. Journal of Cancer Therapy. 2019;10(07):580- 90.

Keepers YP, Pizao PE, Peters GJ, van Ark-Otte J, Winograd B, Pinedo HM. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. European Journal of Cancer and Clinical Oncology. 1991;27(7):897-900.

Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008; 166:353-67.