Molecular Docking Evaluation of Syzygium aromaticum Isolated Compounds Against Exo-β-(1,3)-glucanases of Candida albicans
Journal of Pharmaceutical Research International,
Page 34-44
DOI:
10.9734/jpri/2020/v32i4631100
Abstract
Seventeen compounds from Syzygium aromaticum are selected for exo-β-(1,3)-glucanases inhibitory activity by using molecular docking study. The compounds are uploaded from the PubChem database and molecular docking with AutoDock 1.5.6 tools is carried out. The molecular docking scores indicate that stigmasterol and campesterol are of the highest potentials, and approximately have similar binding affinities with Candida albicans' active site (3N9K, 3O6A). The hydroxyl moiety has played an important role in the antifungal potentiality of all studied compounds.
Keywords:
- Candida albicans
- syzygium aromaticum
- exo-β-(1,3)-glucanases
- stigmasterol
- campesterol.
How to Cite
References
Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: Beyond the Candida albicans paradigm. PLoS Pathog. 2013;9(9):1003550.
DOI:10.1371/journal.ppat.1003550.
Desalermos A, Fuchs BB, Mylonakis E. Selecting an invertebrate model host for the study of fungal pathogenesis. Plos Pathogens. 2012;8:1002451.
Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9:737-748; Xu H, Nobile CJ, Dongari-Bagtzoglou A. Glucanase induces filamentation of the fungal pathogen Candida albicans. PLoS ONE. 2013;8(5):63736.
DOI:https://doi.org/10.1371/journal.pone.0063736
Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PC, Sullivan PA, Cutfield JF. The structure of the exo-β-(1,3)-glucanase from Candida albicans in native and bound forms: Relationship between a pocket and groove in family 5 glycosyl hydrolases11Edited by Wilson IA. J Mol Biol. 1999;294(3):771-783.
Kitchen DB., Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov. 2004; 3(11):935-949.
Thomsen R, Christensen MH. MolDock: A new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315-3321.
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: A review. Biophy Rev. 2017;9(2):91-102.
Batiha GES, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L.(Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacol toxicol activ. Biomol. 2020;10(2):202.
Mbaveng A, Kuete V. Syzygium aromaticum Medicinal Spices and Vegetables from Africa. Elsevier. 2017; 611-625.
Mittal M, Gupta N, Parashar P, Mehra V, Khatri M. Phytochemical evaluation and pharmacological activity of Syzygium aromaticum: A comprehensive review. Inter J Pharm Pharm Sci. 2014;6(8):67-72.
Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML. Ramsay RJ, Cutfield JF. Carbohydrate binding sites in Candida albicans exo-β-1, 3-glucanase and the role of the Phe-Phe ‘clamp’at the active site entrance. The FEBS Journal. 2010; 277(21):4549-4561.
Gupta A, Kohli Y. In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes and in vitro evaluation of combination antifungal activity. Brit J Dermat. 2003; 149:296-305.
DA Silva Barros ME, DE Assis Santos D, Hamdan JS. Evaluation of susceptibility of trichophyton mentagrophytes and trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). J Med Microbiol. 2007;56:514-518.
DE Oliveira Pereira F, Mendes JM, DE Oliveira Lima E. Investigation on mechanism of antifungal activity of eugenol against trichophyton rubrum. Med Mycology. 2013;51:507-513.
Desalermos A, Fuchs BB, Mylonakis E. Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS Pathog. 2012;8:1002451.
Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiology. 2011;9: 737-748.
Xu H, Nobile CJ, Dongari-Bactzoglou A. Glucanase induces filamentation of the fungal pathogen Candida albicans. PloS One. 2013;8:63736.
Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PC, Sullivan PA, Cutfield JF. The structure of the exo-β-(1, 3)-glucanase from Candida albicans in native and bound forms: Relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol. 1999; 294:771-783.
Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML, Ramsay RJ, Cutfield JF. Carbohydrate binding sites in Candida albicans exo-β-1, 3-glucanase and the role of the Phe-Phe ‘clamp’at the active site entrance. The Febs J. 2010;277:4549-4561.
Pinto E, Goncalves MJ, Cavaleiro C, Salgueiro L. Antifungal activity of thapsia villosa essential oil against candida, cryptococcus, malassezia, aspergillus and dermatophyte species. Molecules. 2017; 22:1595.
Zonios DI, Bennett JE. Update on azole antifungals. Seminars in respiratory and critical care medicine. New York: Thieme Medical Publishers. 2008;1994;198-210.
Martinez-Rossi NM, PERES NT, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008; 166:369.
-
Abstract View: 316 times
PDF Download: 117 times