• Submission

Journal of Pharmaceutical Research International

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Articles in Press
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Books
  • Testimonials
Advanced Search
  1. Home
  2. Archives
  3. 2020 - Volume 32 [Issue 25]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Cytotoxicity of Iron Nanoparticles Synthesized Using Dried Ginger

  • Akifa Begum
  • M. Jeevitha
  • S. Preetha
  • S. Rajeshkumar

Journal of Pharmaceutical Research International, Page 112-118
DOI: 10.9734/jpri/2020/v32i2530829
Published: 2 November 2020

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Zingiber officinale (also called ginger) is commonly used for traditional treatment of various diseases and for culinary purposes. This plant species is a herbaceous and develops yearly pseudostems around one meter tall bearing limited leaf cutting edges. The synthesis of metal nanoparticles and nanocomposites is an emerging area of research and exploration in the field of material science for their unique size and shape and have reliant features that are different from the regular bulk structure. The aim of the present study was to synthesize iron nanoparticles using dried ginger and evaluate their cytotoxic effects against brine shrimp. The nanoparticles were synthesized using dried ginger and characterized by UV-vis spectroscopy. The cytotoxicity assessment was carried out using brine shrimp lethality assay. The iron nanoparticles did not show any cytotoxicity to the brine shrimp. This eco-friendly synthesis of iron nanoparticles from dried ginger has proved to be convenient, inexpensive and can be safely used in wide range of medicine and dental fields.


Keywords:
  • Cytotoxicity
  • dried ginger
  • iron
  • nanoparticles.
  • Full Article - PDF
  • Review History

How to Cite

Begum, A., Jeevitha, M., Preetha, S., & Rajeshkumar, S. (2020). Cytotoxicity of Iron Nanoparticles Synthesized Using Dried Ginger. Journal of Pharmaceutical Research International, 32(25), 112-118. https://doi.org/10.9734/jpri/2020/v32i2530829
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Asad SS. Cytotoxic effect of iron nanoparticles in vitro on some cell lines. Iraqi Journal of Cancer and Medical Genetics. 2018;10(1):71-7.

Ying E, Hwang HM. In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci Total Environ. 2010;408(20):4475-81.

Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, Chartrand MS, Yeap SK. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine. 2014;9:2479-88.

Agarwal H, Kumar SV, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles: An eco-friendly approach. Resour Effic Technol. 2017;3(4):406–13.

Abd-Elhalim BT, RF G, Kh A AT, AA H. Biosynthesis of copper nanoparticles using bacterial supernatant optimized with certain agro-industrial byproducts. Novel Research in Microbiology Journal. 2019; 3(6):558-78.

El-Nahrawy AM, Abou Hammad AB, Khattab TA, Haroun A, Kamel S. Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel (III) oxide nanoparticles. React Funct Polym. 2020;149:104533.

Kamel S, Haroun AA, El-Nahrawy AM, Diab MA. Electroconductive composites containing nanocellulose, nanopolypyrrole, and silver nano particles. J Renew Mater. 2019;7(2):193-203.

Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282-89.

Rizk MZ, Abo-El-matty DM, Aly HF, Abd-Alla HI, Saleh SM, Younis EA, Elnahrawy AM, Haroun AA. Therapeutic activity of sour orange albedo extract and abundant flavanones loaded silica nanoparticles against acrylamide-induced hepatotoxicity. Toxicol. Rep. 2018;5:929-42.

Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol. 2014;6(1):9-26.

Mamidi N, Leija HM, Diabb JM, Lopez Romo I, Hernandez D, Castrejon JV, Martinez Romero O, Barrera EV, Elias Zuniga A. Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites. J. Biomed. Mater. Res. Part A. 2017;105(11):3042-9.

Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1(5):482-501.

Borysiuk J, Grabias A, Szczytko J, Bystrzejewski M, Twardowski A, Lange H. Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon. 2008;46(13):1693-701.

Jeevitha M, Rajeshkumar S. Antimicrobial activity of silver nanoparticles synthesized using marine brown seaweed spatoglossum asperum against oral pathogens. Indian J Public Health Res Dev. 2019;10(11):3568-73.

Rajeshkumar S, Tharani M, Jeevitha M, Santhoshkumar J. Anticariogenic activity of fresh aloe vera gel mediated copper oxide nanoparticles. Indian J Public Health Res Dev. 2019;10(11):3664-7.

Menon S, KS SD, Santhiya R, Rajeshkumar S, Kumar V. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloid Surface B. 2018;170:280-92.

Agarwal H, Menon S, Kumar SV, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018;286:60-70.

Rajeshkumar S, Naik P. Synthesis and biomedical applications of cerium oxide nanoparticles–a review. Biotechnol. Rep. 2018;17:1-5.

Menon S, Rajeshkumar S, Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies. 2017;3(4):516-27.

Santhoshkumar J, Rajeshkumar S, Kumar SV. Phyto-assisted synthesis, characterization and applications of gold nanoparticles: A review. Biochem Biophys Rep. 2017;11:46–57.

Rajeshkumar S, Bharath LV. Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 2017;273: 219-27.

Rajeshkumar S. Green synthesis of different sized antimicrobial silver nanoparticles using different parts of plants-A Review. Int. J. Chem Tech Res. 2016;9(4):197–208.

Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad SE, Kalantari K, Taib SH, Rasouli E. Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab. J. Chem. 2020;13(1): 2011-23.

Yusefi M, Shameli K, Ali RR, Pang SW, Teow SY. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J Mol Struct. 2020;1204: 127539.

Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A. Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Environ. Toxicol. 2017;32(5):1617-27.

Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ, McLaughlin JL. Brine shrimp: A convenient general bioassay for active plant constituents. Planta medica. 1982;45(05):31-4.

Sarah QS, Anny FC, Mir M. Brine shrimp lethality assay. Bangladesh J. Pharmacol. 2017;12(2):186-9.

Abitha ST, Rajeshkumar S, Lakshmi T, Roy A. Cytotoxic effects of silver nanoparticles synthesized using amla fruit seed. Drug Invent. Today. 2019;11(9): 2283-2286.

Prasad KS, Gandhi P, Selvaraj K. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Appl Surf Sci. 2014;317: 1052-9.

Prasad AS. Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mat Sci in Semicon Proc. 2016; 53:79-83.

Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc. 2013;102:128-33.

Huang L, Weng X, Chen Z, Megharaj M, Naidu R. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc. 2014;117:801-4.
  • Abstract View: 218 times
    PDF Download: 143 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Pharmaceutical Research International. All rights reserved.