Cytotoxicity of Iron Nanoparticles Synthesized Using Dried Ginger
Journal of Pharmaceutical Research International,
Page 112-118
DOI:
10.9734/jpri/2020/v32i2530829
Abstract
Zingiber officinale (also called ginger) is commonly used for traditional treatment of various diseases and for culinary purposes. This plant species is a herbaceous and develops yearly pseudostems around one meter tall bearing limited leaf cutting edges. The synthesis of metal nanoparticles and nanocomposites is an emerging area of research and exploration in the field of material science for their unique size and shape and have reliant features that are different from the regular bulk structure. The aim of the present study was to synthesize iron nanoparticles using dried ginger and evaluate their cytotoxic effects against brine shrimp. The nanoparticles were synthesized using dried ginger and characterized by UV-vis spectroscopy. The cytotoxicity assessment was carried out using brine shrimp lethality assay. The iron nanoparticles did not show any cytotoxicity to the brine shrimp. This eco-friendly synthesis of iron nanoparticles from dried ginger has proved to be convenient, inexpensive and can be safely used in wide range of medicine and dental fields.
Keywords:
- Cytotoxicity
- dried ginger
- iron
- nanoparticles.
How to Cite
References
Ying E, Hwang HM. In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci Total Environ. 2010;408(20):4475-81.
Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, Chartrand MS, Yeap SK. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine. 2014;9:2479-88.
Agarwal H, Kumar SV, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles: An eco-friendly approach. Resour Effic Technol. 2017;3(4):406–13.
Abd-Elhalim BT, RF G, Kh A AT, AA H. Biosynthesis of copper nanoparticles using bacterial supernatant optimized with certain agro-industrial byproducts. Novel Research in Microbiology Journal. 2019; 3(6):558-78.
El-Nahrawy AM, Abou Hammad AB, Khattab TA, Haroun A, Kamel S. Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel (III) oxide nanoparticles. React Funct Polym. 2020;149:104533.
Kamel S, Haroun AA, El-Nahrawy AM, Diab MA. Electroconductive composites containing nanocellulose, nanopolypyrrole, and silver nano particles. J Renew Mater. 2019;7(2):193-203.
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282-89.
Rizk MZ, Abo-El-matty DM, Aly HF, Abd-Alla HI, Saleh SM, Younis EA, Elnahrawy AM, Haroun AA. Therapeutic activity of sour orange albedo extract and abundant flavanones loaded silica nanoparticles against acrylamide-induced hepatotoxicity. Toxicol. Rep. 2018;5:929-42.
Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol. 2014;6(1):9-26.
Mamidi N, Leija HM, Diabb JM, Lopez Romo I, Hernandez D, Castrejon JV, Martinez Romero O, Barrera EV, Elias Zuniga A. Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites. J. Biomed. Mater. Res. Part A. 2017;105(11):3042-9.
Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1(5):482-501.
Borysiuk J, Grabias A, Szczytko J, Bystrzejewski M, Twardowski A, Lange H. Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon. 2008;46(13):1693-701.
Jeevitha M, Rajeshkumar S. Antimicrobial activity of silver nanoparticles synthesized using marine brown seaweed spatoglossum asperum against oral pathogens. Indian J Public Health Res Dev. 2019;10(11):3568-73.
Rajeshkumar S, Tharani M, Jeevitha M, Santhoshkumar J. Anticariogenic activity of fresh aloe vera gel mediated copper oxide nanoparticles. Indian J Public Health Res Dev. 2019;10(11):3664-7.
Menon S, KS SD, Santhiya R, Rajeshkumar S, Kumar V. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloid Surface B. 2018;170:280-92.
Agarwal H, Menon S, Kumar SV, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018;286:60-70.
Rajeshkumar S, Naik P. Synthesis and biomedical applications of cerium oxide nanoparticles–a review. Biotechnol. Rep. 2018;17:1-5.
Menon S, Rajeshkumar S, Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies. 2017;3(4):516-27.
Santhoshkumar J, Rajeshkumar S, Kumar SV. Phyto-assisted synthesis, characterization and applications of gold nanoparticles: A review. Biochem Biophys Rep. 2017;11:46–57.
Rajeshkumar S, Bharath LV. Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 2017;273: 219-27.
Rajeshkumar S. Green synthesis of different sized antimicrobial silver nanoparticles using different parts of plants-A Review. Int. J. Chem Tech Res. 2016;9(4):197–208.
Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad SE, Kalantari K, Taib SH, Rasouli E. Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab. J. Chem. 2020;13(1): 2011-23.
Yusefi M, Shameli K, Ali RR, Pang SW, Teow SY. Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. J Mol Struct. 2020;1204: 127539.
Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A. Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Environ. Toxicol. 2017;32(5):1617-27.
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DJ, McLaughlin JL. Brine shrimp: A convenient general bioassay for active plant constituents. Planta medica. 1982;45(05):31-4.
Sarah QS, Anny FC, Mir M. Brine shrimp lethality assay. Bangladesh J. Pharmacol. 2017;12(2):186-9.
Abitha ST, Rajeshkumar S, Lakshmi T, Roy A. Cytotoxic effects of silver nanoparticles synthesized using amla fruit seed. Drug Invent. Today. 2019;11(9): 2283-2286.
Prasad KS, Gandhi P, Selvaraj K. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Appl Surf Sci. 2014;317: 1052-9.
Prasad AS. Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mat Sci in Semicon Proc. 2016; 53:79-83.
Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc. 2013;102:128-33.
Huang L, Weng X, Chen Z, Megharaj M, Naidu R. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc. 2014;117:801-4.
-
Abstract View: 218 times
PDF Download: 143 times