A Review of Recent Phytomedicinal Investigations and the Need for DNA Barcoding of Endemic Plants of Northern Cyprus

Main Article Content

Dudu Özkum Yavuz
Mustapha Bulama- Modu

Abstract

Aims: To review the phytomedicinal researches on endemic plants of Northern Cyprus and to assess the plants of their DNA barcoding status.

Study Design: A review.

Methodology: This work reviewed available and accessible original articles in EBSCO, Ovid MEDLINE®, PubMed®, ScienceDirectTM, Scopus® and Web of ScienceTM databases on phytomedicinal investigations and BOLD System, MMDBD version 1.5 and GenBank® on DNA barcodes of the endemic plants of Northern Cyprus until May, 2020. Using keywords searches related to phytochemistry, biological activity and DNA barcoding, DNA Sequences and the data obtain evaluated and the information that does not meet the inclusion criteria were excluded. We believe that this information would tentatively help researchers to ethically explore these plants for their Medicinal and Aromatic potentials.

Results: Only 6 of the 20 endemic plants of Northern Cyprus were phytopharmaceutically investigated, while DNA sequences of 5 were found to be deposited in the publicly accessible databases accounting for 30% and 25% of the total plants respectively.

Conclusion: Endemism is related to uniqueness in features including the phytomedicinal features, thus Northern Cyprus endemic plants hold ample of such. However the results of this review showed that only few were harnessed for their medicinal properties and hence the need for their pharmacological properties and comprehensive barcoding for proper authentication, detection of adulteration, and quality control.

Keywords:
Medicinal plants, essential oils, endemics, phytopharmaceuticals, DNA barcoding, Northern Cyprus

Article Details

How to Cite
Yavuz, D. Özkum, & Modu, M. B.-. (2020). A Review of Recent Phytomedicinal Investigations and the Need for DNA Barcoding of Endemic Plants of Northern Cyprus. Journal of Pharmaceutical Research International, 32(9), 61-70. https://doi.org/10.9734/jpri/2020/v32i930483
Section
Review Article

References

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015;33(8):1582–614.

(Accessed 4 December 2019)

Available:http://dx.doi.org/10.1016/j.biotechadv.2015.08.00. PMID: 26281720.

Care Mediflora. Project Mediterranean islands: Cyprus.

(Accessed 2 December 2019)

Available:http://www.care-mediflora.eu/en/about/mediterranean_islands

Hand R, Hadjikyriakou GN, Christodoulou CS. Updated numbers of the vascular flora of Cyprus including the endemism rate. Cypricola. 2019;13:1–6.

Steinbauer MJ, Irl SDH, Beierkuhnlein C. Elevation-driven ecological isolation promotes diversification on Mediterranean islands. Acta Oecologica. 2013;47:52–6. Available:http://dx.doi.org/10.1016/j.actao.2012.11.004

Brullo S, Pavone P, Salmeri C. Biosystematic researches on Allium cupani group (Amaryllidaceae) in the Mediterranean area. Flora Mediterr. 2015; 25:209–44.

Yildiz K, Gücel S, Dadandi MY. A palynological investigation of endemic taxa from Northern Cyprus. Pakistan J Bot. 2009;41(3):991–1007.

Meriçli F. Some investigations on the medicinal plants growing in northern cyprus. In: Şekeroğlu N, Gezici S, editors. The Fifth International Mediterranean Symposium on Medicinal and Aromatic Plants. Cappadocia: MESMAP Scientific Group. 2019:31.

Tabanca N, Nalbantsoy A, Bernier UR, Agramontse NM, Ali A, Li AY, et al. Essential oil composition of Pimpinella cypria and its insecticidal, cytotoxic, and antimicrobial activity. Nat Prod Commun. 2016;11(10):1531–4.

[PMID: 30549615]

Cecchi L, Coppi A, Selvi F. Evolutionary dynamics of serpentine adaptation in Onosma (Boraginaceae) as revealed by ITS sequence data. Plant Syst Evol. 2011; 297(3–4):185–99.

Tatout C, Warwick S, Lenoir A, Deragon JM. Sine insertions as clade markers for wild crucifer species. Mol Biol Evol. 1999; 16(11):1614–21.

Lannér C, Bryngelsson T, Gustafsson M. Genetic validity of RAPD markers at the intra- and inter-specific level in wild Brassica species with n = 9. Theor Appl Genet. 1996;93(1–2):9–14.

DOI: 10.1007/BF00225720

[PMID:24162192]

Lazaro A, Aguinagalde I. Phylogenetic relationships between the wild taxa of the Brassica oleracea L. group (2n = 18) using random amplified polymorphic DNA assay. Sci Hortic (Amsterdam). 1996;65(4):219–27.

Jesske T, Olberg B, Schierholt A, Becker HC. Resynthesized lines from domesticated and wild Brassica taxa and their hybrids with B. napus L.: Genetic diversity and hybrid yield. Theor Appl Genet. 2013;126(4):1053–65.

[DOI: 10.1007/s00122-012-2036-y]

[PMID:23328861.

Mansion G, Parolly G, Crowl AA, Mavrodiev E, Cellinese N, Oganesian M, et al. How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the Natural History of Campanula (Campanuloideae). PLoS One. 2012;7(11). DOI:10.1371/journal.pone.0050076

[PMID:23209646]

Prieto-Benítez S, Millanes AM, Dötterl S, Giménez-Benavides L. Comparative analyses of flower scent in Sileneae reveal a contrasting phylogenetic signal between night and day emissions. Ecol Evol. 2016; 6(21):7869–81.

Türker AH, Hatipğlu R. Micropropagation of bible hyssop (Origanum syriacum L. var. bevanii (Holmes) Ietswaart). Turkish J For Res. 2018;5(2):97–111.

Pereira F, Carneiro J, Amorim A, Pereira F, Fenu G, Giusso Del Galdo G, et al. The essential oil of Origanum syriacum L. Var. bevanii (Holmes) Ietswaart. Willdenowia. 2016;2(2):315–6.

Available:http://dx.doi.org/10.1016/j.ympev.2016.05.024

Sharifi-rigi A, Heidarian E. Therapeutic potential of Origanum vulgare leaf hydroethanolic extract against renal oxidative stress and nephrotoxicity induced by paraquat in rats. 2019;9(6):563–74.

DOI:10.22038/AJP.2019.13466. PMID: 31763215.

Sharifi-Rad M, Varoni EM, Iriti M, Martorell M, Setzer WN, del Mar Contreras M, et al. Carvacrol and human health: A comprehensive review. Phyther Res. 2018; 32(9):1675–87.

DOI:10.1002/ptr.6103. PMID:29744941

Hanoğlu A, Yiğit Hanoğlu D, Demirci B, Özkum Yavuz D, Başer KHC, Çaliş. Essential oil composition of leaves and flowers of two endemic Phlomis L. species (Phlomis cypria post and Phlomis brevibracteata Turrill) from Northern Cyprus. J Essent Oil Res. 2019;31(3):196–202. Available:https://doi.org/10.1080/10412905.2019.1566099

Polatoğlu K, Karakoç ÖC, Yücel Yücel Y, Gücel S, Demirci B, Demirci F, et al. Insecticidal activity of Salvia veneris Hedge. Essential oil against coleopteran stored product insects and Spodoptera exigua (Lepidoptera). Ind Crops Prod. 2017;97:93–100.

Gulsoy Toplan G, Kurkcuoglu M, Goger F, İşcan G, Ağalar HG, Mat A, et al. Composition and biological activities of Salvia veneris Hedge growing in Cyprus. Ind Crops Prod. 2017;97:41–8.

Dereboylu AE, Sarikahy NB, Sengonca N, Kirmizigul S, Yasa I, Gucel S, et al. Glandular trichomes morphology, chemical composition and antimicrobial activity of the essential oil of three endemic Scutellaria taxa (Lamiaceae). Asian J Chem. 2012;24(11):4911–6.

Duygu Yiğit H, Azmi H, Meryem G, Kaya S, Betül D, K. Hüsnü Can B, et al. Chemical composition and antimicrobial activity of the essential oil of Sideritis cypria Post endemic in Northern Cyprus. J Ess Entıal oıl Res. 2017;29(3):228–32.

Barber JC, Ortega JF, Santos-guerra A, Barber JC, Santos-guerra A. Evolution of endemic Sideritis (Lamiaceae) in Macaronesia : Insights from a chloroplast DNA restriction site analysis Marrero and Robert K . Jansen Published by: American Society of Plant Taxonomists Stable. an. Syst Bot. 2000;25(4):633–47.

(Accessed 4 November 2019)

Available:https://www.jstor.org/stable/2666725

de Boer HJ, Ichim MC, Newmaster SG. DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf. 2015;38(7): 611–20.

DOI:10.1007/s40264-015-0306-8

[PMID:26076652]

SCOPUS. Analyse result. Documents by subject area. 2015;86762.

(Acessed 23 March 2020)

Available:https://www-scopus-com.ezproxy.neu.edu.tr/term/analyzer.uri?sid=cd6bb0d50220f79013f8f350d1d6374e&origin=resultslist&src=s&s=TITLE-ABS-KEY%28Endemic+northern+Cyprus+%29&sort=plf-f&sdt=b&sot=b&sl=39&count=28&analyzeResults=Analyze+results&txGid=dc4d94d938f1c4511dcd9843194d82dd

Şekerci̇ler F, Ketenoğlu O, Üniversitesi A, Bilimleri Enstitüsü F, Anabilim Dalı B, Fakültesi F. Flora of North Dunes of Karpaz National Park (Cyprus). Biol Divers Conserv. 2011;4(2):189–203.

(Accessed 14 March 2020)

Available from: www.biodicon.com

Yildiz K, Gücel S. Chromosome numbers of 16 endemic plant taxa from Northern Cyprus. Turk J Botany. 2006;30(3):181–92.

Garten B, Museum B. Breeding systems and cytology in Cyprian populations of six Limonium species Author (s): Iro Kouzali, Rea Artelari And Ourania Georgiou. Willdenowia, Bd. 42, H. 2. Botanischer Garten und Botanis. 2019;2(2012):307–13.

Gücel S, Yildiz K. Morphological investigations and transplantation attempts on some endemic species of northern cyprus. Pakistan J Bot. 2008;40(4 Spec. Iss.):1399–410.

Ghorbani A, Saeedi Y, De Boer HJ. Unidentifiable by morphology: DNA barcoding of plant material in local markets in Iran. PLoS One. 2017;12(4).

DOI:10.1371/journal.pone.0175722. [PMID:28419161]

de Boer HJ, Ichim MC, Newmaster SG. DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf. 2015;38(7): 611–20.

Dormontt EE, van Dijk KJ, Bell KL, Biffin E, Breed MF, Byrne M, et al. Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections-an Australian perspective. Front Ecol Evol. 2018;6:1–12.

Khan MA, Badshah A, Khan J, Ali FL. Evaluation and toxicological quantification of undeclared allopathics and adulterated synthetic steroids in herbal antihypertensive preparations. Trop J Pharm Res. 2018;17(3):461–6.

Dadzie I, Avorgbedo SA, Appiah-Opong R, Cudjoe O. Cytotoxic and antioxidant effects of antimalarial herbal mixtures. Int J Microbiol. 2020;2020:1–5.

DOI: 10.1155/2020/8645691

[PMID:32104181]

Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Neurol. 2014;(4):177.

[DOI: 10.3389/fphar.2013.00177]

PMID: 24454289.

Baker DA, Stevenson DW, Little DP. DNA barcode identification of black cohosh herbal dietary supplements. J AOAC Int. 2012;95(4):1023–34.

DOI: 10.5740/jaoacint.11-261

[PMID:22970567]

Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11(1).

DOI: 10.1186/1741-7015-11-222

[PMID:24120035]

Ichim MC. The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Front Pharmacol. 2019;10:1–9.

DOI: 10.3389/fphar.2019.01227

[PMID:31708772]

Fernandez-Triana JL, Penev L, Ratnasingham S, Smith MA, Sones J, Telfer A, et al. Streamlining the use of BOLD specimen data to record species distributions: A case study with ten Nearctic species of Microgastrinae (Hymenoptera: Braconidae). Biodivers Data J. 2014;2(1).

DOI: 10.3897/BDJ.2.e4153

[PMID:25473326]

Wong TH, But GWC, Wu HY, Tsang SSK, Lau DTW, Shaw PC. Medicinal Materials DNA Barcode Database (MMDBD) version 1.5 - One-stop solution for storage, BLAST, alignment and primer design. Database. 2018;2018(2018):1–7.

DOI: 10.1093/database/bay112

[PMID:30335153]

Tnah LH, Lee SL, Tan AL, Lee CT, Ng KKS, Ng CH, et al. DNA barcode database of common herbal plants in the tropics: a resource for herbal product authentication. Food Control. 2019;95(2018):318–26.