Chloroquine and Hydroxychloroquine could be an Available Weapons to Treat COVID-19 Associated Pneumonia

Main Article Content

Nehad J. Ahmed

Abstract

Aims: This study aims to review the efficacy of chloroquine and hydroxychloroquine to treat coronavirus disease 2019 (COVID-19) associated pneumonia.

Methodology: This review includes searching Google scholar for publications about the use of hydroxychloroquinein the treatment of COVID-19 using the words of (Covid-19) AND hydroxychloroquine.

Results: Chloroquine and hydroxychloroquine have proven effective in treating coronavirus in China in vitro, but till now only few clinical trials are available and these trials were conducted on a small sample size of the patients. The efficacy of chloroquine and hydroxychloroquine is mainly due to its effect on angiotensin-converting enzyme II (ACE2).

Conclusion: The use of chloroquine and hydroxychloroquine could be very promising but more trials are needed that include larger sample size and more data are required about the comparison between chloroquine and hydroxychloroquine with other antivirals.

Keywords:
Chloroquine, hydroxychloroquine, antivirals, COVID-19, pneumonia, SARS-CoV-2.

Article Details

How to Cite
Ahmed, N. J. (2020). Chloroquine and Hydroxychloroquine could be an Available Weapons to Treat COVID-19 Associated Pneumonia. Journal of Pharmaceutical Research International, 32(9), 52-60. https://doi.org/10.9734/jpri/2020/v32i930482
Section
Review Article

References

Chen D, Yang F, Luo Z, Xie H, Dong H, Jia L. Current status and bottlenecks of global pharmaceutical developments against COVID-19 [J]. Chin Pharmacol Bull. 2020;36(4):S1-11.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733.

Chan J, Yuan S, Kok K, To K, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet. 2020;395(10223):514-523.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med.; 2020.

Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-73.

Arabi Y, Murthy S, Webb S. Correction to: COVID-19: A novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020;1-4.

Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-273.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224): 565-574.

Twitter; 2020.

[Cited 22 March 2020]

Available:https://twitter.com/WHO/status/1225797786903277568

Vetter P, Eckerle I, Kaiser L. Covid-19: A puzzle with many missing pieces. BMJ. 2020;368:m627.

Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;1.

Kupferschmidt K, Cohen J. Will novel virus go pandemic or be contained? Science. 2020;367(6478):610-611.

Su S, Wong G, Shi W, Liu J, Lai A, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502.

Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV - A target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226-36.

Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;S0092-8674(20)30229-4.

Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol. 2000;81(4):853−879.

Báez-Santos Y, St. John S, Mesecar A. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antivir Res. 2015;115:21-38.

Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench M, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol. 2009;84(2): 1198-1205.

Wu Y. Compensation of ACE2 function for possible clinical management. VIROL SIN. 2020;1-3.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395:565−574.

Tang B, Bragazzi N, Li Q, Tang S, Xiao Y, Wu J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model. 2020;5: 248-255.

Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, et al. Drug targets for corona virus: A systematic review. Indian J Pharmacol. 2020;52(1):56-65.

Liu C, Zhou Q, Li Y, Garner L, Watkins S, Carter L, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–331.

Chinese Clinical Trial Register (ChiCTR)-The World Health Organization International Clinical Trials Registered Organization Registered Platform.

[Last Accessed on 2020 Feb 24]

Available:http://www.chictr.org.cn/abouten.aspx

Wang Y, Du M, Su R. Analysis of interventional clinical research protocols related to coronavirus disease 2019 and future expectations. World J Tradit Chin Med.; 2020.

Inglot A. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol. 1969;4(2):203-214.

Miller D, Lenard J. Antihistaminics, local anesthetics and other amines as antiviral agents. P NATL ACAD SCI. 1981;78(6): 3605-3609.

Shimizu Y, Yamamoto S, Homma M, Ishida N. Effect of chloroquine on the growth of animal viruses. Arch Gesamte Virusforsch. 1972;36(1-2):93-104.

Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264-8.

Helal G, Gad M, Abd-Ellah M, Eid M. Hydroxychloroquine augments early virological response to pegylated interferon plus ribavirin in genotype-4 chronic hepatitis C patients. J Med Virol. 2016;88(12):2170-2178.

Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020;177: 104762.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271.

Guo D. Old weapon for new enemy: Drug repurposing for treatment of newly emerging viral diseases. Virol Sin. 2020;1-3.

Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: An old drug against today's diseases. Lancet Infect Dis. 2003;3(11):722-7.

Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23:300-302.

Yang N, Shen H. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int J Biol Sci. 2020;16(10):1724-1731.

Jie Z, He H, Xi H, Zhi Z. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(3):185-188.

Boyd-Kimball D, Gonczy K, Lewis B, Mason T, Siliko N, Wolfe J. Classics in chemical neuroscience: Chlorpromazine. ACS Chem Neurosci. 2019;10(1):79-88.

Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58(8):4885-93.

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;22(2):69.

Ekins S, Mottin M, Ramos PRPS, Sousa BKP, Neves BJ, Foil DH, et al. Déjà vu: Stimulating open drug discovery for SARS-CoV-2 Drug Discov Today; 2020. [Published Online Ahead of Print, 2020 Apr 19].

Audio transcript of the news briefing held by the State Council of China on February 17, 2020. The National Health Commission of the People's Republic of China. (In Chinese)

(Accessed February 18, 2020)

Available:http://www.nhc.gov.cn/xcs/yqfkdt/202002/f12a62d10c2a4 8c6895cedf2faea6e1f.shtml

Chinese Clinical Trial Register (ChiCTR) - The world health organization international clinical trials registered organization registered platform [Internet]. Chictr.org.cn; 2020.

[Cited 22 March 2020]

Available:http://www.chictr.org.cn/searchprojen.aspx

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;pii:ciaa237.

Tingbo L, Hongliu C, Yu C, Zuobing C, Qiang F, WeiIi H, et al. Handbook of COVID-19 prevention and treatment; 2020.

Karimi A, Rafiei Tabatabaei S, Rajabnejad M, Pourmoghaddas Z, Rahimi H, et al. An algorithmic approach to diagnosis and treatment of coronavirus disease 2019 (COVID-19) in children: Iranian Expert’s consensus statement. Arch Pediatr Infect Dis. 2020;8(2):e102400.

Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem. 2006;49(9):2845-2849.

Fox R. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993; 23(2 Suppl 1):82-91.

Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7.

Cheng C, Xueting Y, Siqi T, Jieen X, Haiyan L, Dongyang L. Advances of the clinical pharmacology of hydroxychloroquine sulfate. Chin J Clin Pharmacol Therapeut. 2020; 25(2).

Press Announcements [Internet]. U.S. Food and Drug Administration; 2020.

[Cited 22 March 2020]

Available:https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-continues-facilitate-development-treatments

Frisk-Holmberg M, Bergqvist Y, Englund U. Chloroquine intoxication [letter]. Br. J. Clin. Pharmacol. 1983;15:502–503.

Chloroquine phosphate. In Micromedex Drug Reference for Android; 2020. [Mobile Application Software].

Available:https://play.google.com/store

Hydroxyxhloroquine sulfate. In Micromedex Drug Reference for Android; 2020. [Mobile Application Software].

Available:https://play.google.com/store