Antioxidant Activities of Phycocyanin: A Bioactive Compound from Spirulina platensis

Main Article Content

Gamal A. Gabr
Salwa M. El-Sayed
Mohamed S. Hikal


Background and Objectives: The cyanobacterium Spirulina also called blue green algae is a class of gram negative bacteria which possesses wide range of bioactive colored components as Phycocyanin, carotenoids and chlorophyll. Spirulina is one of the microalgae containing nutrients that have been used as a functional food in addition to therapeutic and pharmaceutical applications. This study aimed to evaluate the biochemical composition of Spirulina platensis biomass and its ethanolic and aqueous extracts, as well as, evaluate the antioxidant activities of the biomass, ethanolic, aqueous and the purified Phycocyanin.

Materials and Methods: The chemical compositions of Spirulina platensis were determined, as well as the antioxidant activity of extracts, Phycocyanin, Phycocyanopeptide and Phycocyanobilin using (DPPH) radical-scavenging activity.

Results: Results show that biomass has higher total proteins (49.72±0.508%), total carbohydrates (10.3±0.330%), moisture content (7.5±0.685%), lipids (7.2±0.105%) and Minerals (6.9±0.130%). In biomass, the total phenols (51.20±0.25 µg/mL) and flavonoids (97.73±1.858 µg/mL) were high compared to the ethanolic (49.48±0.130 and 69.07±1.814 µg/mL) and aqueous (15.27±0.639 and 4.67±0.611 µg/mL) extracts respectively. In the phenolic compounds, pyrogallol was identified as the major compound in biomass and aqueous extract (63.85 and 12.33%) respectively, E-vanillic acid in ethanolic (18.20 %), whereas, hespirdin (3.517 and1.639%) were major flavonoids found in aqueous and ethanolic extracts respectively. The DPPH scavenging activity was found higher in ethanolic extract compared to aqueous while in bioactive, the order of antioxidant activity was Phycocyanin > Phycocyanobilin > Phycocyanopeptide.

Conclusions: The study data regarding to Spirulina nutritional value, makes Spirulina an excellent choice when formulating diets and combating malnutrition. Furthermore, it is a strong antioxidant and could be used as alternative treatments as anticancer, antidiabetic, and anti-inflammatory agent.

Spirulina platensis, antioxidants, chemical composition, phycocynin.

Article Details

How to Cite
Gabr, G. A., El-Sayed, S. M., & Hikal, M. S. (2020). Antioxidant Activities of Phycocyanin: A Bioactive Compound from Spirulina platensis. Journal of Pharmaceutical Research International, 32(2), 73-85.
Original Research Article


Okechukwu PN, Ekeuku SO, Sharma M, Nee CP, Chan HK, Mohamed N, Anisah Froemming GR. In vivo and in vitro antidiabetic and antioxidant activity of spirulina. Phcog Mag. 2019;15:17-29.

Deepa J, Aleykutty NA, Jyoti H. Effect of combination of two plant extracts on diabetes mellitus. Int J Pharm Pharm Sci. 2018;10:49-52.

Zheng J, Inoguchi T, Sasaki S, Maeda Y, McCarty MF, Fujii M, Ikeda N, Kobayashi K, Sonoda N, Takayanagi R. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol. 2013;304:110–120.

Ojiakoi OA, Nwanjo HU. Effects of pioglitazone on atherogenic risk predictor indices of alloxan-induced diabetic rabbits. Biokemistri. 2005;17:179-84.

Suzery M, Majid D, Setyawan D, Sutanto H. Improvement of stability and antioxidant activities by using phycocyanin - chitosan encapsulation technique. Earth Environ. Sci. 2017;55:1-7.

Jensen GS, Attridge VL, Beaman JL, Guthrie J, Ehmann A, Benson KF. Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from arthrospira platensis: contribution to bioactivities by the non-phycocyanin aqueous fraction. Journal of Medicinal Food. 2015;18(5):535–541.

Banji D, Banji OJF, Pratusha NG, Annamalai AR. Investigation on the role of Spirulina platensis in ameliorating behavioral changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride. Food Chemistry. 2013;140(1-2):321–331.

Simpore J, Zongo F, Kabore F. Nutrition rehabilitation of HIV-infected and HIV-negative undernourished children utilizing Spirulina. Annals of Nutrition and Metabolism. 2005;49(6):373–380.

Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuˇca K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016;90:1817–1840.

Avila J, Magesh D. Purification, characterization and antioxidant properties of C-Phycocyanin from Spirulina platensis. SIRJ-APBBP. 2015;2(1):1-15.

Ismaiel MMS, El-Ayouty YM, Piercey-Normorea M. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Braz. J. Microbiol. 2016;47:298–304.

Hema A, Setyo W, Kustiariyah T, Mega S, Iriani S. Antioxidant activity of Spirulina platensis and sea cucumber Stichopus hermanii in streptozotocin-induced diabetic rats. Tropical Life Sciences Research. 2019;30(2):119–129.

Dhiab RB, Ouada HB, Boussetta H, Franck F, Elabed A, Brouers M. Growth, fluorescence, photosynthetic O2 production and pigment content of salt adapted cultures of Arthrospira (Spirulina) platensis. J. Appl. Phycol. 2007;19:293–301.

Anwer R, Alam A, Khursheed S, Kashif SM, Kabir H, Tasneem F. Spirulina: Possible pharmacological evaluation for insulin-like protein. J. Appl. Phycol. 2012;25(3):883-889.

Sarada R, Pillai GM, Ravishankar GA. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry. 1999;34:795–801.

Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72:348-363.

Biancarosa I, Espe M, Bruckner CG, Heesch S, Liland N, Waagbo R, Torstensen B, Lock EJ. Amino acid composition, protein content and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. J. Appl. Phycol. 2017;29:1001–1009.

AOAC. Official methods of analysis of the Association of Agricultural Chemists. Published by AOAC: 18th Ed Washington, DC, USA; 2005.

Salwa ME, Hikal MS, Abo El- Khair BE, El-Ghobashy RE, El-Assar AM. Hypoglycemic and hypolipidemic effects of Spirulina platemsis, phycocyanin, phycocyanopeptide and phycocyanobilin on male diabetic rats. Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo Special Issue. 2018;26(2A):1121-1134.

Marinova D, Ribarova F, Atanassova M. Total phenolics and total flavonoids in bulgarian fruits and vegetables. J. of the University Chemical Technology and metallurgy. 2005;40(3):255-260.

Shahidi F, Naczk M. Methods of analysis and quantification of phenolic compounds. Food Phenolic: Sources, Chemistry, Effects and Applications. Technomic Publishind Company, Inc: Lancaster. 1995;287-293.

Goupy P, Hugues M, Biovin P, Amiot MJ. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric. 1999;79: 1625-1634.

Elzaawely AA, Xuan TD, Tawata S. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. and their antioxidant activity. Food Chem. 2007;103:486–494.

El-Baz F, Aly HF, El-Sayed AB, Mohamed AA. Role of Spirulina platensis in the control of glycemia in DM2 rats. Int. J. Sci. Eng. Res. 2013;4:1731–1740.

Wong PK, Chan KY. Growth and value of Chlorella S. alina grown in highly saline sewage effluent. Agric Ecosystem and Environment. 1990;30:235-250.

Aly MS, Gad AS. Chemical composition and potential application of Spirulina platensis biomass. Journal of American Science. 2010;6(9):819-826.

Rajaa S, Mourad K, Azzouz E. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. Journal of Food Quality. 2019;11. Article ID: 3707219.

Plaza M, Santoyo S, Jaime LG, Reina GB, Herrero M, Señoráns FJ, Ibáñez E. Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis. 2010;51(2):450–455.

Konícková R, Vanková K, Vaníková J, Vánová K, Muchová L, Subhanová I, Vítek L. Anti-cancer effects of blue-green alga Spirulina platensis: A natural source of bilirubinlike tetrapyrrolic compounds. Ann. Hepatol. 2014;13:273–283.

Syarina PN, Karthivashan G, Abas F, Arulselvan P, Fakurazi S. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells. EXCLI Journal. 2015;14:385-393.

El-Baky HHA, El Baz FK, El-Baroty GS. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr. J. Biotechnol. 2009;8(24):7059-7067.

Colla LM, Reinehr CO, Reichert CJ, Costa AV. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Biores. Technol. 2007;98:1489-1493.

Miranda MS, Cintra RG, Barros SBM, Mancini-Filho J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998;31:1075-1079.

Adisakwattana S, Pongsuwan J, Wungcharoen C, Yibchok-anun S. In-vitro effects of cinnamic acid derivatives on protein tyrosine phosphatase 1B. J. Enzyme Inhib. Med. Chem. 2013;28:1067-1072.

Bodet C, La VD, Epifano T, Grenier FD. Narigenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J. Periodontal. Res. 2008;43:400-407.

Karthivashan G, Tangestani M, Arulselvan P, Abas F, Fakurazi S. Identification of bioactive candidate compounds responsible for oxidative challenge from hydroethanolic extract of Moringa oleifera leaves. J. Food Sci. 2013;78:1368– 1375.

Bassoli BK, Cassolla P, Borba-Murad GR. Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochemistry and Function. 2008;26(3):320–328.

Sotillo DV, Hadley M. Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. Journal of Nutritional Biochemistry. 2002;13(12):717–726.

Santos MD, Almeida MC, Lopes NP, Souza GEP. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biological and Pharmaceutical Bulletin. 2006;29(11): 2236–2240.

Babita R, Pandit HM. quantitative analysis of flavonoid ‘Naringin’ a natural product and its correlation with antioxidant activity in different fruit fractions of grapefruit, citrus Decuana Var. Paradisi (Macfad.) H.H.A Nicholls: Use of Industrial Waste. Int. J. Pharm. Bio. Sci. 2017;8(2):715- 721.

El-Baky HHA, El Baz FK, El-Baroty GS. Enhancement of antioxidant production in Spirulina plantensis under oxidative stress. American-Eurasian Journal of Scientific Research. 2007;2(2):170–179.

Thomas NV, Kim SK. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ. Toxicol. Pharmacol. 2011;32:325–335.

Susanto E, Fahmi AS, Agustini TW, Rosyadi S, Wardani AD. Effects of different heat processing on fucoxanthin, antioxidant activity and colour of Indonesian brown seaweeds. Earth and Environmental Science. 2017;55:1-10.

Estrada JE, Bescos PB, Fresno AMV. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco. 2001;56:497-500.

Patel A, Mishra S, Ghosh PK. Antioxidant potential of C-Phycocyanin isolated from three cyanobacterial species: Lyngbya, Phormidium and Spirulina spp. Indian Journal of Biochemistry & Biophysics. 2006;43(1):31-35.

Sonani RR, Rastogi RP, Madamwar D. Antioxidant potential of phycobiliproteins: Role in anti-aging research. Biochemistry and Analytical Biochemistry. 2015;4(4):1-8.

Chopra K, Bishnoi M. Antioxidant profile of Spirulina: A blue-green microalga. In Spirulina in Human Nutrition and Health. Boca Raton: CRC Press. 2008;101-118.

Zhou SS, Li D, Sun WP, Guo M, Lun YZ, Zhou YM. Nicotinamide overload may play a role in the development of type 2 diabetes. World J. Gastroenterol. 2008;7(1545):5674-5684.

Cherdkiatikul T, Suwanwong Y. Production of the α and β Subunits of Spirulina Allophycocyanin and C-Phycocyanin in Escherichia coli: A comparative study of their antioxidant activities. Journal of Biomolecular Screening. 2014;19(6):959–965.

Sangeetha P, Babu S, Rengasamy R. Antioxidant properties of R-Phycoerythrin from Kappaphycus alvarezii (Doty) Doty EX SILVA. Journal of Innovative Research and Solutions (JIRAS). 2017;3(1):47-56.

Zhai X, Zhang C, Zhao G, Ran F, Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnol. 2017;15(4):1-12.

Belokobylsky A, Ginturi E, Kuchava N, Kirkesali E, Mosulishvili L, Frontasyeva M, Pavlov SS, Aksenova NG. Accumulation of selenium and chromium in the growth dynamics of Spirulina platensis. J. Radioanal. Nucl. Chem. 2004;259(1):65-68.

Zhou ZP, Liu XL, Chen JX, Wang M, Chen Y, Zhang Z, Zhou BC. Factors that effect antioxidant activity of c-phycocyanins from Spirulina platensis. Journal of Food Biochemistry. 2005;29(3):313–322.