Using Mobile– iPhone as New Visible Colour Detector for Determination of Pharmaceutical (Potassium Permanganate)

Main Article Content

Mustafa Abdulkadhim Hussein
Lamia Abdultef Risan Al-Iessa
Mohauman Mohammed Majeed Alrufaie
K. H. Al–Sowdani


In this work the use of a mobile phone as a spectrophotometer using camera resolution by installing the software (application store AAP) on the phone (i Phone 6), which analyzes the colour images (RGB) in results with a colour length where it was possible to calculate the colour value of each image representing a specific concentration of the solution under study. A calibration curve with a range of (1 × 10-3 - 6.25 × 10-4) mmole.L-1 using optical image analysis with the concentration of the preparation of potassium permanganate (KMnO4). A calibration curve for statistical correlation range of 0.993 (R2) was found.

Smartphone, UV-visible spectrophotometer, potassium permanganate.

Article Details

How to Cite
Abdulkadhim Hussein, M., Risan Al-Iessa, L. A., Majeed Alrufaie, M. M., & Al–Sowdani, K. H. (2020). Using Mobile– iPhone as New Visible Colour Detector for Determination of Pharmaceutical (Potassium Permanganate). Journal of Pharmaceutical Research International, 32(1), 13-17.
Original Research Article


Perry E, Chenji Z, Baigang Z, Xiangqian H, Vivek KN, Bing Y, Zhiwen L. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin. Scientific Reports. 2017;7: 12224.
DOI: 10.1038/s41598-017-12482-5

Jie C, Fuhong C, Rongxiao He, Sailing H. Experimental demonstration of remote and compact imaging spectrometer based on mobile devices. Sensors. 2018;18: 1989.
DOI: 10.3390/s18071989

Lutfi FM, Angga A, Nessi M, Marti H, Rina E, Lena R, Renat K. Smartphone coupled with a paper-based colorimetric device for sensitive and portable mercury ion sensing. Chemosensors. 2019;7:25.
DOI: 10.3390/chemosensors7020025

Ahsan S, Kiseon K. FallDroid: An automated smart-phone-based fall detection system using multiple kernel learning. IEEE Transactions on Industrial Informatics. 2019;15(1):35–44.

Anuradha S, Sandeep K. Jha. A paper strip based non-invasive glucose biosensor for salivary analysis. Biosensors and Bioelectronics. 2015;67:763–768.

Wei Z, Jiateng Y, Xiaohan W, Jia H, Bozhao Q, Troy R. Real-time vehicle motion detection and motion altering for connected vehicle: Algorithm design and practical applications. Sensors. 2019;19: 4108.
DOI: 10.3390/s19194108

Jennifer A. Smartphone-based detection of middle ear fluid. JAMA. 2019;322(2):107.
DOI: 10.1001/jama.2019.9395

Andrew J. S. McGonigle, Thomas C. Wilkes, Tom DP, Jon RW, Joseph MC, Forrest M, Alfio VP. Smartphone spectrometers. Sensors. 2018;18:223.
DOI: 10.3390/s18010223

Christian GD. Analytical Chemistry, 6th Ed. Johan Wily and Sons: New York; 2004.

Burges C. Valia. Analytical method and procedures. Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB40WF, UK; 2000.

Meier PC, Cilag AG, Zund RE, Teranol AG. Statistical methods in analytical chemistry. 2nd Ed, John Wiley and Sons: Inc; 2000.

Hassannejad H, Matrella G, Ciampolini P, De Munari I, Mordonini M, Cagnoni S. A new approach to image-based estimation of food volume. Algorithms. 2017;10:66.

Diming Z, Qingjun L. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors and Bioelectronics. 2016;75:273–284.

Anuradha SI, Sandeep KJ. Smartphone based non-invasive salivary glucose biosensor. Analytica Chimica Acta; 2017.
DOI: 10.1016/j.aca.2017.10.003

Zhang C, Kim JP, Creer M, Yang J, Liu Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens. Bioelectron. 2017;97:164–168.