Ethnobotanical and Pharmacological Importance of Western Himalayan Fir Abies pindrow (Royle ex D. Don) Royle: A Review

Main Article Content

Dwaipayan Sinha


Aims: Abies pindrow (Royle ex D. Don) Royle., colloquially known as the Western Himalayan fir, is a conifer that grows along the Himalayan mountains from Afghanistan to Nepal. The plant is extensively used by locals for the treatments of various ailments. Thus based on the available reports about its importance in traditional system of medicine, an attempt has been made to review this species in context of its medicinal and pharmaceutical importance.

Study Design: The review article has been designed based on literature survey. The article is grossly divided into four broad phases consisting of compiled information of Abies pindrow: (1) Ethnobotanical information (2) Chemical Constituents (3) Pharmacological activities (4) Discussion mainly highlighting the mode of action of the bioactive compounds in relation to its pharmacological activity.

Methodology: Extensive literature search have been performed in the web using PubMed, PubMed Central, google scholar as search platform. Efforts have also been taken to compile information from research papers and review articles not more than 10 years old. Information from old literatures were preferably avoided unless found to be very relevant to the subject.

Results: The literature survey revealed that the plant has been used to treat cough and cold, diabetes, cataract and bladder diseases. The plant is also considered to be carminative, astringent, antispasmodic, diuretic, tonic and anti-inflammatory. The plant is also rich in terpenes and terpene alcohols. Testing for antidiabetic, neuroprotective, anticataract and antixiolytic activities have been promising and the bioactive constituents and efforts are made to interpret the possible mechanism of action of bioactive compounds in bringing about the pharmacological activities.

Conclusion: It is concluded that the plant can be explored and bioprospected for an affordable source of drug and nutraceutical for better management of health related issues of people of Indian subcontinent.

Abies pindrow (Royle ex D. Don) Royle, anti-inflammatory, antixiolytic, terpenes, antioxidant

Article Details

How to Cite
Sinha, D. (2019). Ethnobotanical and Pharmacological Importance of Western Himalayan Fir Abies pindrow (Royle ex D. Don) Royle: A Review. Journal of Pharmaceutical Research International, 31(6), 1-14.
Review Article


Elsen PR, Ramesh K, Wilcove DS. Conserving Himalayan birds in highly seasonal forested and agricultural landscapes. Conserv Biol. 2018;32(6): 1313-1324.

Manish K, Pandit MK. Geophysical upheavals and evolutionary diversification of plant species in the Himalaya. Peer J. 2018;6:e5919.

Rana SK, Rawat GS. Database of Himalayan plants based on published floras during a century. Data. 2017;2:36.

Kumar D, Kumar S. A complete monographic study on Abies pindrow Royle aerial parts. Indian J Pharm Sci. 2017;79(6):1001-1007.

Rawat R, Vashistha DP. Common herbal plant in Uttarakhand, used in the popular medicinal preparation in ayurveda. Int J Pharmacogn Phytochem Res. 2011;3(3): 64-73.

Gupta D, Bhardwaj R, Gupta RK. In vitro antioxidant activity of extracts from the leaves of Abies pindrow Royle. Afr J Tradit Complement Altern Med. 2011;8(4):391–397.

Ali K, Ahmad H, Khan N, Jury S. Future of Abies pindrow in Swat district, Northern Pakistan. J For Res. 2014;25(1):211-214.

Majeed H, Bokhari TZ, Sherwani SK, Younis U, Shah MHR, Khaliq B. An overview of biological, phytochemical, and pharmacological values of Abies pindrow. J Pharmacogn Phytochem. 2013;2(4):182-187.

Jan G, Khan MA, Jan F. Traditional medicinal and economic uses of gymnosperms of Dir Kohistan Valleys, NWFP, Pakistan. Ethnobot Leaflets. 2009;13:1509-1521.

Mukhtar HM, Goyal R, Kumar H. Pharmacognostical standardization of Abies pindrow bark. Asian J Biochem Pharma Res. 2018;4(8):1-49.

Khan MA, Khan MA, Hussain M, Mujtaba G. An ethnobotanical inventory of Himalayan Region Poonch Valley Azad Kashmir (Pakistan). Ethnobot Res Appl. 2010;8:107-123.

Gilani SA, Qureshi RA, Farooq U. Ethnobotanical studies of Ayubia National Park, District Abbotabad, Pakistan. Online J Biol Sci. 2001;1(4):284-286.

Bano A, Ayub M, Rashid S, Sultana S, Sadia H. Ethnobotany and conservation status of floral diversity of Himalayan range of Azad Jammu and Kashmir-Pakistan. Pak J Bot. 2013;45(1):243-251.

Ishtiaq M, Iqbal P, Hussain T. Ethnobotanical use of gymnosperms of Neelam valley and Muzaffarabad of Kashmir. Indian J Tradit Knowl. 2013;12(3):404-410.

Ajmal SM, Mohammad S, Khan Z, Bakht Z, Habib A, Alama MZ. Ethnomedicinal and phytoeconomic elaboration of Lilownai valley, District Shangla, Pakistan. Int Res J Pharm. 2012;3(4):164-169.

Gilani SS, Abbas SQ, Shinwari ZK, Hussain F, Nargis K. Ethnobotanical studies of Kurram Agency, Pakistan through rural community participation. Pak J Biol Sci. 2003;6(15):1368-1375.

Ummara U, Bokhari TZ, Altaf A, Younis U, Dasti AA. Pharmacological study of Shogran Valley Flora, Pakistan. Int J Sci Eng Res. 2013;4(9):1419-1427.

Hussain W, Badshah L, Ullah M, Ali M, Ali A, Hussain F. Quantitative study of medicinal plants used by the communities residing in Koh-e-Safaid Range, Northern Pakistani Afghan borders. J Ethnobiol Ethnomed. 2018;14(1):30.

Hussain M, Shah GM, Khan MA. Traditional medicinal and economic uses of Gymnosperms of Kaghan Valley, Pakistan. Ethnobot leaflets. 2006;10:72-81.

Ishtiyak P, Hussain SA. Traditional use of medicinal plants among tribal communities of Bangus Valley, Kashmir Himalaya, India. Ethno Med. 2017;11(4):318-331.

Lone V. Tree diversity and economic importance of forest trees of Kashmir (Jammu and Kashmir), India. Int J Fundamental Applied Sci. 2013;2(4):56-63.

Pant S, Samant SS. Ethnobotanical observations in the Mornaula Reserve Forest of Kumaon, West Himalaya, India. Ethnobot Leaflets. 2010;14:193-217.

Bhat JA, Kumar M, Bussmann RW. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. J Ethnobiol Ethnomed. 2013;9:1.

Tiwari JK, Dangwal LR, Rana CS, Tiwari P, Ballabha R. Indigenous uses of plant species in Nanda Devi Biosphere Reserve, Uttarakhand, India. Rep Opinion. 2010;2(2):67-70.

Kumar DP, Kumar A, Bhupender D, Sachin S. Ethnobotanical knowledge and usage of wild plants in Theog Forest Division, Himachal Pradesh, North Western Himalaya. J EthnobioL Tradit Med. 2015; 124:922-935.

Kunwar RM, Fadiman M, Cameron M, Bussmann RW, Thapa-Magar KB, Rimal B, Sapkota P. Cross-cultural comparison of plant use knowledge in Baitadi and Darchula districts, Nepal Himalaya. J Ethnobiol Ethnomed. 2018;14(1):40.

Tiwari KP, Minocha PK. A chalcone glycoside from Abies pindrow. Phytochemistry. 1980;19:2501-2503.

Samejo MQ, Burdi DK, Bhanger MI, Talpur FN, Khan KM. Identification of hydrocarbons from Abies pindrow leaves. Chem Nat Comp D. 2010;46(1):132-134.

Samejo MQ, Ndukwe GI, Burdi DK, Bhanger MI, Khan KM. Isolation and crystal structure of maltol from Abies pindrow. J Med Plants Res. 2009;3(2):55-60.

Tripathi M, Jain L, Pandey VB, Ray AB, Rucker G. Pindarolactone. A lanostane derivative from the leaves of Abies pindrow. Phytochemistry. 1996;43(4):853-855.

Burdi DK, Samejo MQ, Bhanger MI, Khan KM. Fatty acid composition of Abies pindrow (West Himalayan Fir). Pak J Pharm Sci. 2007;20(1):15-19.

Padalia RC, Verma RS, Chauhan A, Goswami P, Chanotiya CS. Chemical analysis of volatile oils from West Himalayan Pindrow Fir Abies pindrow. Nat Prod Commun. 2014;9(8):1181-1184.

Kumar D, Kumar S. Quantitative determination of Shikimic acid and Pinitol in Abies pindrow aerial parts using TLC. Indian J Pharm Sci. 2016;78(2):287-290.

Devrani MK, Rawat K, Chandra D, Prasad K, Bisht G. Phytochemical studies and GC-MS analysis of Abies pindrow. World J Pharm Res. 2017;6(7):1639-1644.

Singh RK, Pandey BL, Tripathi M, Pandey VB. Anti-inflammatory effect of (+)-pinitol. Fitoterapia. 2001;168-170.

Tewari D, Samoilă O, Gocan D, Mocan A, Moldovan C, Devkota HP, Atanasov AG, Zengin G, Echeverría J, Vodnar D, Szabo B, Crişan G. Medicinal plants and natural products used in cataract management. Front Pharmacol. 2019;10:466.

Dubey S, Saha S, Saraf SA. In vitro anti-cataract evaluation of standardised Abies pindrow leaf extract using isolated goat lenses. Nat Prod Res. 2015;29(12):1145-1148.

Hughes LD, Raitt N, Riaz MA, Baldwin SJ, Erskine K, Graham G. Primary care hypnotic and anxiolytic prescription: Reviewing prescribing practice over 8 years. J Family Med Prim Care. 2016;5(3): 652–657.

Kumar V, Singh RK, Jaiswal AK, Bhattacharya AK, Acharya SB. Antixiolytic activity of Indian Abies pindrow Royle leaves in rhodents: An experimental study. Indian J Exp Biol. 2000;38:343-346.

Kumar D, Kumar S. Screening of antianxiety activity of Abies pindrow Royle aerial parts. Indian J Pharm Educ Res. 2015;49(1):66-70.

Kumar D, Kumar S. Neuropharmacological activities of Abies pindrow aerial parts in mice. Journal of Pharmaceutical Technology, Research and Management. 2015;3(2):141-151.

Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48(3):e219.

Hussain Z, Waheed A, Qureshi RA, Burdi DK, Verspohl EJ, Khan N, Hasan M. The effect of medicinal plants of Islamabad and Murree region of Pakistan on insulin secretion from INS-1 cells. Phytother Res. 2004;18(1):73-77.

Mushtaq S, Chaudhry MA, Rahman HMA. Calcium channels blocked activity: Providing the basis for medicinal use of Abies pindrow in diarrhea and bronchitis. Bangladesh J Pharmacol. 2015;10:430-435.

Zhang X, Niu M, Teixeira da Silva JA, Zhang Y, Yuan Y, Jia Y, Xiao Y, Li Y, Fang L, Zeng S, Ma G. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. BMC Plant Biol. 2019;19(1):115.

Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol. 2018;220(3):692-702.

Suwannayod S, Sukontason KL, Pitasawat B, Junkum A, Limsopatham K, Jones MK, Somboon P, Leksomboon R, Chareonviriyaphap T, Tawatsin A, Thavara U, Sukontason K. Synergistic toxicity of plant essential oils combined with pyrethroid insecticides against blow flies and the house fly. Insects. 2019;10(6): 178.

Dambolena JS, Zunino MP, Herrera JM, Pizzolitto RP, Areco VA, Zygadlo JA. Terpenes: Natural products for controlling insects of importance to human health—A structure-activity relationship study. Psyche; 2016. Article ID: 4595823.

Rao A, Zhang Y, Muend S, Rao R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother. 2010; 54(12):5062–5069.

Nazzaro F, Fratianni F, Coppola R, Feo V. Essential oils and antifungal activity. Pharmaceuticals (Basel). 2017;10(4):86.

Maslan J, Mims JW. What is asthma? Pathophysiology, demographics, and health care costs. Otolaryngol Clin North Am. 2014;47(1):13-22.

Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017;38(12): 942–954.

Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122): 783-800.

Sethi G, Ahn KS, Sung B, Aggarwal BB. Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther. 2008; 7(6):1604-14.

Kim DS, Lee HJ, Jeon YD, Han YH, Kee JY, Kim HJ, Shin HJ, Kang J, Lee BS, Kim SH, Kim SJ, Park SH, Choi BM, Park SJ, Um JY, Hong SH. Alpha-Pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macro-phages. Am J Chin Med. 2015;43(4):731- 42.

Rufino AT, Ribeiro M, Sousa C, Judas F, Salgueiro L, Cavaleiro C, Mendes AF. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur J Pharmacol. 2015;750:141-50.

Ur Rashid H, Xu Y, Ahmad N, Muhammad Y, Wang L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E(2), inducible NO synthase and nuclear factor κb activities. Bioorg Chem. 2019;87:335-365.

Kaur J, Kukreja S, Kaur A, Malhotra N, Kaur R. The oxidative stress in cataract patients. J Clin Diagn Res. 2012;6(10): 1629–1632.

Kaczmarczyk-Sedlak I, Folwarczna J, Sedlak L, Zych M, Wojnar W, Szumińska I, Wyględowska-Promieńska D, Mrukwa-Kominek E. Effect of caffeine on biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes. Arch Med Sci. 2019;15(4):1073–1080.

Wang CY, Chen YW, Hou CY. Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop. 2019;22(1):230-238.

González-Burgos E, Gómez-Serranillos MP. Terpene compounds in nature: A review of their potential antioxidant activity. Curr Med Chem. 2012;19(31): 5319-41.

Wang ZJ, Heinbockel T. Essential oils and their constituents targeting the GABAergic system and sodium channels as treatment of neurological diseases. Molecules. 2018;23(5):1061.

van Brederode J, Atak S, Kessler A, Pischetsrieder M, Villmann C, Alzheimer C. The terpenoids Myrtenol and Verbenol act on δ subunit-containing GABAA receptors and enhance tonic inhibition in dentate gyrus granule cells. Neurosci Lett. 2016;628:91-7.

Yang H, Woo J, Pae AN, Um MY, Cho NC, Park KD, Yoon M, Kim J, Lee CJ, Cho S. α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Mol Pharmacol. 2016;90(5):530-539.

Wang J, Wang H. Oxidative stress in pancreatic beta cell regeneration. Oxid Med Cell Longev. 2017;1930261.

Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017;26(10):501–518.

Murali R, Karthikeyan A, Saravanan R. Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol. 2013;112(3):175-81.

Ma CJ, Nie AF, Zhang ZJ, Zhang ZG, Du L, Li XY, Ning G. Genipin stimulates glucose transport in C2C12 myotubes via an IRS-1 and calcium-dependent mechanism. J Endocrinol. 2013;216(3): 353-62.

Sökmen M, Akram Khan M. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology. 2016;24(2-3):81–86.

Stepanić V, Matijašić M, Horvat T, Verbanac D, Kučerová-Chlupáčová M, Saso L, Žarković N. Antioxidant activities of Alkyl Substituted Pyrazine derivatives of Chalcones-In vitro and In silico study. Antioxidants (Basel). 2019;8(4):90.

Takac P, Kello M, Pilatova MB, Kudlickova Z, Vilkova M, Slepcikova P, Petik P, Mojzis J. New chalcone derivative exhibits antiproliferative potential by inducing G2/M cell cycle arrest, mitochondrial-mediated apoptosis and modulation of MAPK signalling pathway. Chem Biol Interact. 2018;292:37-49.

Dos Santos MB, Bertholin Anselmo D, de Oliveira JG, Jardim-Perassi BV, Alves Monteiro D, Silva G, Gomes E, Lucia Fachin A, Marins M, de Campos Zuccari DAP, Octavio Regasini L. Antiproliferative activity and p53 upregulation effects of chalcones on human breast cancer cells. J Enzyme Inhib Med Chem. 2019;34(1): 1093–1099.

Drevenšek G, Lunder M, Benković ET, Štrukelj B, Kreft S. Cardioprotective effects of silver fir (Abies alba) extract in ischemic-reperfused isolated rat hearts. Food Nutr Res. 2016;60:29623.

Eva Tavčar Benković, Grohar T, Žigon D, Švajger U, Janeš D, Kreft S, Štrukelj B. Chemical composition of the silver fir (Abies alba) bark extract Abigenol® and its antioxidant activity. Industrial Crops and Products. 2014;52:23-28.