• Submission

Journal of Pharmaceutical Research International

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Articles in Press
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Books
  • Testimonials
Advanced Search
  1. Home
  2. Archives
  3. 2017 - Volume 20 [Issue 2]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Langmuir, Freundlich, Temkin and Dubinin–radushkevich Isotherms Studies of Equilibrium Sorption of Ampicilin unto Montmorillonite Nanoparticles

  • Davoud Balarak
  • Ferdos Kord Mostafapour
  • Hossein Azarpira
  • Ali Joghataei

Journal of Pharmaceutical Research International, Page 1-9
DOI: 10.9734/JPRI/2017/38056
Published: 18 December 2017

  • View Article
  • Download
  • Cite
  • Statistics
  • Share

Abstract


Present study was accomplished to prospect the viability of using the montmorillonite (Mon) nanoparticles as an adsorbent to remove the Ampicillin under various experimental conditions. The Physico-chemical characteristics of the studied adsorbent were surveyed. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms were applied to portray the data obtained from the adsorption studies. The findings showed that the highest R2 values were related to Langmuir and Dubinin–Radushkevich isotherm models. The greatest adsorption capacity (qe) for Langmuir and Dubinin–Radushkevich isotherm models were recognized to be 134.48 mg/g and 141.22 mg/g, respectively; and the separation factor was calculated to be 0.113 which is indicative of a favorable sorption. Temkin Isotherm model clarified that the heat of sorption process was 34.61 J/mol; and the mean free energy calculated by Dubinin–Radushkevich isotherm model was anticipated to be 2.56 Kj/mol which these undoubtedly demonstrate the physisorption process for Ampicillin adsorption experiments.


Keywords:
  • Montmorillonite nanoparticles
  • ampicilin
  • isotherm.
  • Full Article - PDF
  • Review History

How to Cite

Balarak, D., Mostafapour, F., Azarpira, H., & Joghataei, A. (2017). Langmuir, Freundlich, Temkin and Dubinin–radushkevich Isotherms Studies of Equilibrium Sorption of Ampicilin unto Montmorillonite Nanoparticles. Journal of Pharmaceutical Research International, 20(2), 1-9. https://doi.org/10.9734/JPRI/2017/38056
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Abstract View: 1471 times
    PDF Download: 1388 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Pharmaceutical Research International. All rights reserved.