A Review on Impurity Profiling, Degradation Studies, and Bioanalytical Methods of Anti-diabetic Drugs

Mahesh M. Deshpande a*, Madhuri H. Bhalerao a and Pooja D. Pabale a

a Department of Pharmaceutical Quality Assurance, Amrutvahini College of Pharmacy, Sangamner, M.S., India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i34B36156

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/70722

Received 02 February 2022
Accepted 05 April 2022
Published 26 April 2022

ABSTRACT

According to ICH Q3A(R), the impurity in a new drug substance is “any component of a new drug substance that is not the chemical entity defined as a new drug substance”. As per ICH Q3B(R), the impurity in a new drug product is “any component of the drug product that is not the drug substance and excipients in the drug product.” The forced degradation studies are used to facilitate the development of analytical methodology, to achieve a better understanding of the drug substance and the drug product stability, and to determine degradation pathways and the degradation products. This study will help to get the most stable formulation. The bioanalytical method development and validation is an essential part in the drug discovery and development. There is a need to develop and validate bioanalytical methods, as sponsors have to submit clinical pharmacology, bioavailability, bioequivalence, pharmacokinetic evaluation along with non-human pharmacology and toxicology studies and preclinical studies to regulatory authorities. There are a number of spectroscopic methods include Ultraviolet spectroscopy, Mass spectroscopy, Nuclear magnetic resonance spectroscopy and Chromatographic methods include HPLC, HPTLC, GC, UPLC as well as hyphenated techniques like LC-MS, LC/ESI-MS, LC-NMR-MS used for identification and characterization of impurities in an API and the drug products forced degradation study to obtain stability data and bioanalytical methods. The uniqueness of this review is that it describes the detail information and background explaining impurities, forced degradation and bioanalytical method development and validation as well as all literature available regarding development and validation of all said methods for the drugs and the drug products used to treat type 2 diabetes.

*Corresponding author: E-mail: mahesh_deshpande11@rediffmail.com, maheshdeshpande83@gmail.com;
Keywords: Antidiabetic drugs; impurity profiling; force degradation study; analytical methods; regulatory guidelines.

ABBREVIATIONS

API : Active Pharmaceutical Ingredient
BEH : Bridged Ethylene Hybrid
CE : Capillary Electrophoresis
DP’s : Degradation Products
ESI/MS : Electrospray Ionization Mass Spectrometry
FT-IR : Fourier Transform Infrared
GC–MS : Gas Chromatography – Mass Spectrometry
GTIs : Genotoxic Impurities
HILIC : Hydrophilic Interaction Liquid Chromatography
HPLC : High Performance Liquid Chromatography
HPLC/ESI-MS : High-performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry
HPTLC : High Performance Thin Layer Chromatography
ICH : International Conference on Harmonization
LC/MS/MS : Liquid Chromatography–Tandem Mass Spectrometry
LC–ESI-MS : Liquid Chromatography–Electro Spray Ionization Mass Spectroscopy
LC-ESI/MS/MS : Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry
LC–ESI-QT/MS/MS : Liquid Chromatography–Tandem Mass Spectrometry Using Electrospray Ionization Source And Q-Trap Mass Analyzer
LC–MS : Liquid Chromatography–Mass Spectrometry
MeOH : Methanol
MS : Mass Spectrometry
NDA : New Drug Application
PDA : Photodiode Array
PRIs : Process Related Impurities
QTOF : Quadrupole-Time-of-Flight
SIAM : Stability Indicating Assay Method
SFC : Supercritical Fluid Chromatography
TEA : Triethylamine
TFA : Trifluoroacetic Acid
UPLC : Ultra-Performance Liquid Chromatography

1. INTRODUCTION

According to ICH Q3A(R), the impurity in a new drug substance is "any component of a new drug substance that is not the chemical entity defined as a new drug substance". As Per ICH Q3B(R), the impurity in the new drug product is "any component of the drug product that is not the drug substance and excipients in the drug product." The impurities in pharmaceuticals are the unwanted chemicals that remain with the active pharmaceutical ingredient (API), or develop throughout formulation development or upon aging of an APIs and formulated API to medicine. The presence of these unwanted chemical even in small amounts may influence the efficacy and safety of pharmaceutical products [1].

There is an ever-increasing interest in impurities present in APIs recently, not only purity profile but also impurity profile has become essential as per various regulatory requirements [2]. Impurity is initial quality issue in pharmaceutical product that would compromise the efficacy of the drug product. Hence any impurity present in the drug product should be absolutely understood each qualitatively and quantitatively, and qualify, if necessary, through toxicological assessment. So, identification, isolation, qualifications of impurities is an important part of drug development and regulatory assessment. The pharmaceutical impurities are unavoidable as a result of no chemical reaction has 100% selectivity and chemical compound is 100% pure. Ever so, it is possible to reduce impurities via synthetic improvement and appreciate preformulation/formulation studies [3].
Common terms of impurities: [1,2,3]

There are various terms associated with impurities as follow,

1. Intermediate
2. Penultimate intermediate
3. By-products
4. Transformation products
5. Interaction products
6. Related products
7. Degradation products

1. Intermediate - The compounds produced during the synthesis of the desired material are called intermediates, especially when they have been isolated and characterized.

2. Penultimate intermediate - This is the last compound in the synthesis chain prior to the production of the final desired compound.

3. By-product - The compound produced in the reaction other than the required intermediates. They can occur through a variety of side reactions, such as over reaction, incomplete reaction, demineralization and rearrangement, unwanted reactions between starting materials or intermediates with chemical reagents or catalysts.

4. Transformation products - This is a relatively nondescript term that relates to theorized and non-theorized products that may be produced in the reaction, which can include synthetic derivatives of by-products. Transformation products are very similar to by-products.

5. Interaction products - These products formed either intentionally or unintentionally interaction between various chemicals involved. Two types of interaction products that can be commonly encountered are drug substance–excipient interactions and drug substance container/closure interaction.

6. Related products - These are chemically similar to drug substance and may exhibit potentially similar biological activity.

7. Degradation products - They are formed by the decomposition of active ingredient or other material of interest by the effect of external factors like heat, light and moisture.

Now a day the ICH, EMA and USFDA have claimed the importance of impurities in the analysis of drug substances. Alternatively going for determination of purity, the identification and quantification of impurities in formulation & bulks are characterized. This is the best approach to designate the Identity, Quality, Safety, Efficacy, Purity, Strength and Stability of an APIs and pharmaceutical formulations. It has become a mandatory requirement in various pharmacopoeias (BP, EP, USP) to include impurities present in drugs in specified amount [4].

1.1 Classification of Impurities

The impurities present in new drug substance can be divided in to the chemistry and safety aspects. According to the chemistry aspect the impurities are identified, classified and analytical methods are developed to set their specifications. The safety aspects explain the qualification of the impurities which are not performed at the time of clinical trials and their threshold limit are determined. According to the ICH guidelines the impurities are classified as Organic, Inorganic, and Solvent. This ICH guidance classifies impurities in three classes as Organic, Inorganic and Solvent. Every class and the aspects should be clearly reported related to each impurity for new drug [5] Refer Fig. 1.

According to ICH Q3A (R2) guidelines, impurities classified as [6]

1. Organic impurities can be identified or unidentified, volatile or nonvolatile. They can arise from manufacturing process or storage of new drug substances.
 - Starting materials
 - Byproducts
 - Intermediates
 - Degradation products
 - Reagents, ligands and catalysts

2. Inorganic impurities can result from manufacturing process. They are normally known and identified.
 - Reagents, ligands and catalysts
 - Heavy metals and other residual Solvents
 - Inorganic salts
 - Other materials (e.g, filter aid and charcoal)
3. **Residual Solvents** are the volatile organic chemicals used during the manufacturing process or generated during the drug production. They are categorized into three classes with their limits in pharmaceutical products set by the ICH guidelines Q3C. The class 1 solvents includes Benzene, Carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethylene and 1,1,1-trichloroethane should be avoided. The class 2 solvents such as methanol, toluene, pyridine, N, N-dimethylformamide and acetonitrile have permitted daily exposure limits (PDEs). The class 3 solvents such as acetone, isopropyl alcohol, butanol, ethanol and ethyl acetate should be limited by GMP or other quality-based requirements [7].

ICH limits for selected list of common organic solvents found as volatile impurities [8].

1.2 Elemental Impurity

The elemental impurities in the drug and the drug products such as As, Cd, Cu, Pb, Hg, V and Pt may arise from several sources; they may be added intentionally in synthesis, or may be present as a contaminant, e.g., through interaction with manufacturing equipment, containers and closures. They do not provide therapeutic benefits to the patients; their level should be controlled within acceptable limits in drug product i.e., Permitted Daily Exposure [P.D.E] for each element of toxicological concern and application of risk approach to control elemental impurities in drug product [9].

Chart 1. list of common organic solvents

<table>
<thead>
<tr>
<th>Volatile Organic Impurity</th>
<th>Limits(ppm)</th>
<th>PDE (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrile</td>
<td>410</td>
<td>4.1</td>
</tr>
<tr>
<td>1,4-dioxane</td>
<td>380</td>
<td>3.8</td>
</tr>
<tr>
<td>Chloroform</td>
<td>60</td>
<td>0.6</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>600</td>
<td>6.0</td>
</tr>
<tr>
<td>Pyridine</td>
<td>200</td>
<td>2.0</td>
</tr>
<tr>
<td>1,1,2-trichloroethane</td>
<td>80</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Fig. 1. Classification of impurities
They are classified from ICH Q3D and USP;
Class 1: Cd, Pb, As, Hg
Class 2A: Co, V, Ni
Class 2B: Ag, Au, Tl, Pd, Pt, Ir, Os, Rh, Ru
Class 3: Sb, Ba, Li, Cr, Cu, Sn, Ni
Class 4B: Fe, Zn, K, Ca, Na, Mn, Mg, W, Al

According to USP impurities classified as:
1. Impurities in official articles
2. Ordinary impurities
3. Organic volatile impurities

1.3 Sources of Impurities

1. Crystallization related impurities

The polymorphism is the term used to denote crystal systems where a substance can exists in numerous crystal packing arrangement, all of which has same elemental composition. It is also possible to possess crystal system where the substance exists in numerous crystals packing arrangement, each of which has a different elemental composition; this phenomenon is known as solvatomorphism [10].

2. Stereochemistry related impurities

It is of paramount importance to seem for stereochemistry related compounds i.e. those compounds that have similar chemical structure but different spatial orientation these compounds will be considered impurities within the API [10].

3. Impurities arising during storage

A variety of impurities can originate from during storage condition or shipment of the drug products. The impurities can come from glass, rubber stoppers and plastic packaging materials. Metal oxide like Na2O, SiO2, CaO2, MgO are the main components leached from the glass [11].

4. Mutual interaction amongst ingredients

Most of the vitamins are extremely labile and because of ageing they generate problems of instability in many dosage forms, particularly in liquid dosage forms. A vitamin on degradation doesn’t give toxic impurities; on the opposite hand, the potency of active ingredients lowers pharmacopeial specifications [11].

5. Residual solvents

These are organic volatile chemicals used during manufacturing processor generating during the production. They have toxic or environmentally hazardous properties; their complete removal can be very difficult. The gas chromatography is employed for detection of residual solvents because they’re mostly volatile in nature [12].

6. Synthetic Intermediates and by products

The impurities in a pharmaceutical compound or a new chemical entity originate mainly during the synthetic process from raw materials, solvents, and intermediate and by products. The raw materials are normally used to manufactured the drug substance that having minor purity. Similarly, solvents utilized in the synthesis are containing the variety of impurities which will change the range from a trace levels to significant amounts that may react with various chemicals utilized in the synthesis to produce the impurities [13].

7. Formulation related impurities

The number of impurities in a drug product can arise out of inert ingredients used to formulate a drug substance. In the process of formulation, a drug substance is subjected to a variety of conditions that may result in its degradation or other deleterious reaction. The solutions and suspensions are potentially susceptible to degradation due to hydrolysis. The water utilized in the formulation cannot only contribute its own impurities; it may also provide a ripe situation for hydrolysis and catalysis. The similar reactions are possible in the other solvents that may be used [14].

8. Functional group related impurities

The ester hydrolysis can be seen in a few drugs viz aspirin, benzocaine, cefotaxime, ethyl paraben, and cefpodoxime proxetil. The oxidative degradation of the drugs that have hydroxyl group directly bonded to an aromatic ring (viz phenol derivatives like catecholamine and morphine), some drugs like hydrocortisone; methotrexate, and, conjugated dienes (viz vitamin A and unsaturated free fatty acids), heterocyclic aromatic rings, nitroso and nitrite derivatives, and aldehydes (especially flavone rings) are all susceptible to oxidative degradation [11,15].

9. Degradation related impurities

The Impurities can also be formed by degradation of the end product during manufacturing of the bulk drugs. The degradation
of penicillin and cephalosporin’s are well-known examples of degradation products. The presence of a β-lactam ring, likewise a α- amino group in the C6/C7 side chain plays a critical role in their degradation [14].

10. Method related impurities

The diclofenac sodium in the parenteral formulation containing an impurity; 1-2, 6 dichlorophenyl indole. In diclofenac sodium indolinone derivatives could also be formed due to condition of autoclave (i.e., 123±20ºC) as it induced intramolecular reaction [14].

1.4 Regulatory Guidelines On impurities [10,14,16]

There are several regulatory guidelines for impurities are given below:

1) ICH Guidelines

Q1A(R) – Stability testing of new drug substances and products.
Q3A- Impurities in new drug substances.
Q3B- Impurities in new drug products.
Q3C-Guidelines for residual solvents.
Q3D- Guidelines for elemental impurities

2) US-FDA Guidelines

NDAs- Impurities in new drug substances
ANDAs - Impurities in new drug substances

3) Australian regulatory guidelines for prescription medicine, Therapeutic Governance Authority(TGA),Australia

1.5 Impurity Profiling [17,18]

The impurity profiling is a common name of analytical activities, the aim of which is the detection, identification, structure elucidation and quantitative determination of the organic and inorganic impurities and also the residual solvents in bulk drug and pharmaceutical formulation. In case of all phases of development, production and stability testing of the drug product, the impurity profiling of an API are a critical quality control variable. It should contain the details of impurities both qualitative and quantitative form. It describes route of investigating impurity related to with an API.

Schematic representation of scheme for impurity profiling of drugs is shown in Fig. 2.
2. FORCE DEGRADATION STUDY [19]

The forced degradation studies are used to facilitate the development of analytical methodology, to achieve a better understanding of the drug substance and the drug product stability, and to determine the degradation pathways and the degradation products. This study will help to get most stable formulation. The drug substance and the drug product stability are a critical parameter which may influence purity, potency and safety. There may be a risk in patient’s safety by formation of toxic degradation products due to changes in the drug stability. Therefore, how much degradation is sufficient has been a question for pharmaceutical scientist. The degradation of the drug substances between 5% and 20% has been accepted as reasonable for validation of chromatographic assays. As an opinion of some pharmaceutical scientists, acceptable stability limit of 90% of label claim is usual and 10% degradation is ideal for the use in analytical validation for the small drug molecule. The forced degradation study Chart is shown in Fig. 3.

2.1 Hydrolytic Condition

The hydrolytic study under the acidic and the basic conditions involves catalysis of ionizable functional groups present in the molecule. Hydrochloric acid or sulfuric acids (0.1–1M) for the acid hydrolysis and the sodium hydroxide or potassium hydroxide (0.1–1 M) for the base hydrolysis are suggested as a suitable reagent for the hydrolysis.

2.2 Oxidation Condition

In the oxidation conditions, the hydrogen peroxide is widely used for the oxidation of the drug substances in forced degradation studies but other oxidizing agents such as metal ions, oxygen, and radical initiators (e.g., azobisisobutynitrile, AIBN) can also be used.

2.3 Photolytic Condition

The photo stability studies are carried out to produce primary degradants of the drug substance by exposure to UV or fluorescent conditions. Samples of the drug substance and solid/liquid drug product should be exposed to a minimum of 1.2 million lxh and 200 W h/m² light.

2.4 Thermal Condition

The thermal degradation (e.g., dry heat and wet heat) studies are carried out at the exhausting conditions than approved ICH Q1A accelerated testing conditions. The solid-state drug substances and drug products samples should be exposed to the dry and wet heat, while liquid drug products should be exposed to dry heat.

![Figure 3. Force degradation study](image-url)
The International Conference on Harmonization addresses the questions regarding to stability as follows: [20-24]

Q1A(R2) Stability testing of new drug substances and products.
Q1B Photostability testing of new drug substances and products.
Q1C Stability testing for new dosage form
Q1D Bracketing and Matrixing designs for stability testing of new drug substances and drug products

3. ANALYTICAL METHODS FOR IDENTIFICATION AND CHARACTERIZATION OF IMPURITY

A) Reference standard method:
The main purpose of this method is to quantify and to control reference standards which are used in the process of the development and control of a new drug. As we know that the reference standards allow to understand the fundamental information for evaluation and observing the performance of the bulk drug, by products, impurities, degradation products, excipients, raw materials, intermediates [25].

B) Spectroscopic methods
a) Ultraviolet-visible
The UV-VIS spectroscopy is based on the absorption of the visible and ultraviolet (UV) radiation in the wavelength range of 200-800 nm. The UV at single wavelength doesn't give sufficient information. To confirm greater selectivity and to induce maximum information about molecule the diode array detectors are used nowadays [25].

b) Infrared(IR)
The sample is subjected to electromagnetic radiations which are within the range of 600 cm⁻¹ and 4000 cm⁻¹. This radiation effects the bonds present in the molecule and then it stretches or causes bending in molecule due to absorption of energy of a specific wavelength. The wavelength at which they’re absorbed gives us information about different types of bonds which might be used for knowing the structure of the samples. They are mostly use to characterize the solids and semisolids. It provides though little complex but significant or unique fingerprint of any molecule which can be used for analysis of samples and thus determining the impurities present [26].

c) Raman spectroscopy
It is a spectroscopic technique used to study vibrational, rotational, and other low frequency modes in a system. It relies on the Raman scattering of the monochromatic light usually from a laser, in the visible, near infrared, or near ultraviolet range. The laser light interacts with the photons or other excitations in the system, leading to the energy of the laser photons being shifted to up or down. The shift in energy gives information about the phonon modes in the system [27].

C) Mass spectrometry (MS)
The technique, where charged species (ions) are separated and detected according to their mass to charge ratio (m/z) is known as Mass spectrometry (MS). The MS is specific highly selective and sensitive methods for molecular analysis provides insights to the structure of the analyte. It is also used for monitoring, characterizing and quantification of the drug related substances in an API. If single method fails to provide necessary selectivity, coupling of this technique with the GC, HPLC, and LC lead to increases the power of the technique when complex samples are to be analyze [28].

D) Nuclear magnetic resonance (NMR)
The NMR plays a vital role in identifying low level impurities in bulk drug materials with or without chromatographic isolation. The structural elucidation of impurities in the drug materials mostly involve 1H and 13C experiments, the information obtained from these experiments is sufficient to ascertain the structure of the unknown impurity in the drug material. The introduction of the NMR with on-line coupling to the HPLC reduces the need for preparative isolation of impurities [28].

E) Separation methods
a) Capillary electrophoresis (CE)
The high separation efficiencies compared to other chromatographic techniques is achieved by the CE for determination of the drug-related impurities. In case, the HPLC technique fails to adequately measure impurities, the CE can be employed, especially for very the polar
compounds. The CE is very useful for the separation of closely related compounds, such as the diastereomers and enantiomers. The various modes of the electrophoresis methods have been developed in combination with the chromatography which are as follows [14,29].

- Capillary zone electrophoresis.
- Capillary gel electrophoresis.
- Micellar electrokinetic capillary chromatography.
- Capillary electrochromatography.
- Capillary isoelectric focusing.
- Capillary isotachophoresis.

b) Gas chromatography (GC)

The GC technique involves vaporization of the sample and subsequent injection into the gas chromatographic column. The sample is passed through the column by means of gas flow. The solvent used is an inert gas and the stationary phase is a liquid film coated on a support of used silica or a packed sorbent. The sample in the vapour form moves through the column by adsorption and partition phenomenon. The components within the sample mixture are separated by means of their individual affinity to involve in the adsorption and desorption processes. The separated components are eluted from the column and detected by a suitable detector [14].

c) **High pressure liquid chromatography (HPLC)**

The HPLC is especially used for identifying, quantifying and purifying the impurities and each component of a substance. This method establishes itself as a critical method in the field of pharmaceutical analysis for both qualitative and quantitative analysis. The USFDA has made a special attention and directed all the pharmaceutical countries of its state to ensure the quality of its product by using the HPLC before selling to global market. The HPLC is used to elucidate structures and quantitatively determine impurities and degradation products in bulk drug substances and pharmaceutical formulations [11].

d) **Thin layer chromatography (TLC)**

The TLC is the technique used for the identification of various components up to a trace amounts. This technique has been used for developing stability-indicating analytical method. It can be used as a quantitative technique, in conjunction with densitometric detection i.e., high performance thin layer chromatography (HPTLC) for compounds which are difficult to analyze by other chromatographic methods because of the absence of the chromosphere. The TLC is very much used during the initial degradation and stress studies to study the number of degradation products formed. The HPTLC is more sensitive and faster compare to conventional TLC technique [26].

e) **Supercritical fluid chromatography (SFC)**

The SFC is considered a normal phase technique because it utilizes the relatively nonpolar, "liquid" carbon dioxide as the bulk of the mobile phase that is used for the analysis and purification of the low to moderate molecular weight, thermally labile molecules. It is often used for the separation of chiral compounds. The SFC primarily uses supercritical CO2 as an eluent. This compound has an acceptable critical pressure (73.8 bar) and its critical temperature is close to ambient conditions (31.18°C) [27].

F) Isolation methods

These methods are mandatory to separate the impurities for their structural identification. Generally, the chromatographic and non-chromatographic methods are utilized for isolation of impurities before characterization. A list of methods that may use for the isolation of impurities is given below.

a) Solid phase extraction methods
b) Liquid- Liquid extraction methods
c) Accelerated solvent extraction methods
d) Column chromatography
e) Flash Chromatography [30]

G) Hyphenated methods

These methods are receiving great ever attention as utilized for solving various analytical problems. As it combines the separation methods with spectroscopic methods like attachment of the mass spectroscopy with gas chromatography or HPLC, it is being used for both the quantitative and qualitative analysis of unknown compounds in complex products. These methods are necessary tool in identifying minor components like the impurities, degradation products, metabolites in various matrices [30].
There are several hyphenated techniques used are given below:

a) Gas Chromatography-Mass spectrometry (GC-MS)
b) Liquid Chromatography-Mass spectrometry (LC-MS)
c) Liquid chromatography-diode array-Mass spectrometry (LC-DAD-MS)
d) Liquid chromatography-Nuclear magnetic resonance (LC-NMR)
e) Liquid chromatography-mass spectrometry-mass spectrometry (LC-MS-MS)
f) High performance liquid chromatography-DAD Mass spectrometry (HPLC-DAD-MS)
g) High performance liquid chromatography-DAD-Nuclear magnetic resonance-mass spectrometry (HPLC-DAD-NMR-MS)

An antidiabetic agent comprises a chemically and pharmacologically heterogeneous group of the drugs. The target in the treating diabetes mellitus is to prevent excessive rises in blood glucose throughout each successive 24 hours period. In type 1 diabetes, where there is absent or little endogenous beta-cell function, insulin treatment is crucial to prevent diabetic ketoacidosis, and the aim is that the precise replacement of the insulin in the fasting state and after the meals. In type 2 diabetes, a choice of the treatment, including insulin is obtainable. These comprises the drug that increase insulin secretion (Sulfonylurea such as glibenclamide, glipizide, gliclazide, and the meglitinide-like drugs such as repaglinide and nateglinide), that improve the insulin sensitivity (biguanides. metformin and the thiazolidine dione such as rosiglitazone, pioglitazone and troglitazone), and the drug that reduce the carbohydrate absorption (acarbose). In type 2 diabetes, choice of the therapy depends on the several factors (pregnancy and presence of often used to achieve better control than when one agent is alone e.g. Insulin plus sulfonylurea, sulfonylurea plus metformin). Within each category of the agent, choice is commonly associated with pharmacokinetics consideration [31].

4. REGULATORY REQUIREMENTS FOR PHARMACEUTICAL IMPURITY IDENTIFICATION

According to the ICH, FDA and USP guidelines impurities classified in three categories as, organic impurities, inorganic impurities, and residual solvents and these impurities can be form from variety of sources, as given in Fig. 1. The control of organic impurities in a new drug substance is based on the Maximum Daily Dose and Total Daily Intake (TDI) of the impurities. Table 1. (Provides the ICH threshold for control of organic impurities in a new drug substance). Depending on whether the MDD higher or lower than 2g, organic impurities in a new drug substance at (or greater than) 0.05% or 0.1% require identification. The control of organic impurities in a new drug products are outlined in Table 2. Based on the MDD, the identification thresholds for organic impurities in a new drug product are divided into four groups to give more consideration to low dose drug products. For most the new drug products, the MDD is between 10mg – 2g/day, therefore, any impurities at 0.2% or greater would have to be identified [32].

Table 1. Reporting, Identification, Qualification thresholds for impurities in a new drug substance according to ICH Q3A (R2) [33]

<table>
<thead>
<tr>
<th>Maximum daily dose</th>
<th>Reporting Threshold</th>
<th>Identification Threshold</th>
<th>Qualification Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2g/day</td>
<td>0.05%</td>
<td>0.10% or 1.0mg per day intake (whichever is lower)</td>
<td>0.15% or 1.0mg per day intake (whichever is lower)</td>
</tr>
<tr>
<td>>2g/day</td>
<td>0.03%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

Table 2. Reporting, Identification, Qualification threshold for Degradation Products in New Drug Products according to ICH Q3B (R2) [34]

<table>
<thead>
<tr>
<th>Reporting Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Daily Dose</td>
</tr>
<tr>
<td>≤ 1g</td>
</tr>
<tr>
<td>> 1g</td>
</tr>
</tbody>
</table>
5. BIOANALYTICAL METHOD DEVELOPMENT AND VALIDATION

The bioanalytical method development and validation is an essential part in the drug discovery and development. There is need to develop and validate bioanalytical methods, as the sponsors have to submit clinical pharmacology, bioavailability, bioequivalence, pharmacokinetic evaluation along with non-human pharmacology and toxicology studies and preclinical studies to regulatory authorities. The bioanalytical methods are developed in biological matrices such as blood, serum, plasma or urine [35]. The bioanalysis process means analysis of the drugs, metabolites and biomarkers in biological samples, and it involves various steps from the sample collection to sample analysis and data reporting. The sample preparation is very important in the bioanalysis. The robust and stable sample preparation method should be applied to produce the reliable results. To remove the interferences from the sample matrix and to improve analytical system performance are the important role of sample preparation. The sample preparation is intensive and time consuming. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the method of choice in bioanalytical laboratories for separation and detection due to high selectivity and high sensitivity of the LC-MS/MS technique. The information known about the analyte chemical structure and their properties is important before the start of bioanalytical work. It has important role in the drug development. During the drug development, bioanalysis is an essential part in pharmacokinetic, pharmacodynamics studies and the toxicological evaluation. Additionally, the bioanalytical method validation is an essential for the quantitative determination of various types of analytes in the biological matrices. The bioanalysis procedure includes sample preparation, analysis, calibration and the data evaluation and reporting. A good sample preparation and a hyphenated instrumentation are required in modern bioanalysis. In pharmaceutical research companies the process of drug discovery and development of comprehensive bioanalytical methods is very important. In addition, the method validation has an important role in bioanalysis to ensure the quality of the performed method. The bioanalytical method validation is very important for supporting of the new drug applications or biologics license applications [36,37].

1. Bioanalytical method development and validation
2. Before the bioanalytical method development study of analyte chemical structure, pKa value, solubility properties, stability and adsorption properties are carried out.
3. Bioanalytical method developed and validated can be divided into:
4. 1 Preparation of sample
5. 2 Bioanalytical method development and establishment of assay procedure and
6. 3. Application of validated bioanalytical method to the analysis of drug [36]

5.1 Bioanalysis

The bioanalysis means the identification and quantification of analytes in the biological samples (blood, plasma, serum, saliva, urine, feces, skin, hair, organ tissue). The bioanalysis is not only detection of small molecules e.g. drugs and metabolites but also identify large molecules e.g. the proteins and peptides. The bioanalysis is well established to support drug discovery and drug development. The bioanalysis has an important role to perform the, pharmacokinetic (PK), pharmacodynamics (PD) and toxicokinetic (TK) studies of a new drugs. It also established in clinical, preclinical and forensic toxicology laboratories. Thus, the bioanalysis is an important in many researches such as the
development of new drugs, forensic analysis, doping control and diagnostic of many diseases [36,38].

5.2 Extraction Technique in Drug Bioanalysis

The preparation of sample is a primary step, regularly used sample preparation methods is protein precipitation (PPT), Liquid-liquid extraction (LLE), solid phase extraction (SPE).

Following are the commonly used sample preparation techniques [36].

Protein precipitation (PPT)

The protein precipitation is fast and simple extraction technique applied for both hydrophilic and hydrophobic compounds. The precipitation is usually induced by addition of a miscible organic solvent (Methanol, acetonitrile, or acetone), salt (aluminium chloride), metal ions (zinc sulphate) or by changing the sample pH to change the nature of the solution (acids such as trichloroacetic, perchloric, metaphosphoric). In some cases, extraction of some drugs and metabolites the protein precipitation method can be followed by LLE or SPE in order to achieve higher efficiency [36].

Liquid-liquid extraction (LLE)

The LLE has been widely used for the preparation of aqueous and biological samples (e.g. Plasma, urine) also for extraction of the acidic and basic drug from biological samples. The liquid-liquid extraction technique is not suitable for extraction of analytes with different polarity from same sample [36].

Solid phase extraction (SPE)

The SPE has a high efficiency, cost-effective, high reproducibility, and easy to operate. It is used for separating and concentrating of a trace analytes in biological samples [36].

Types of SPE techniques

1. Reversed phase- solid phase extraction

This is less selective compared to normal phase or ion-exchange SPE, Methanol, acetonitrile or mixed buffer/solvent are used as elution sample in RP-SPE. The Sorbent used are bonded silica(C4, C8, C18 and Ph, with 40 μm particle size and 60Å pore size) and polymer sorbent as polystyrene can be used. This technique is used in biological fluids and environmental pollutants in water [36].

2. Normal phase-solid phase extraction

Typical sorbents in NP-SPE are silica with polar functional groups (Si-CN, Si-NH2, Si-Diol and pure silica). The retention mechanism in this technique is based on hydrogen bonding between analytes and sorbent [36].

3. Ion exchange-solid phase extraction

It is most selective method in SEE, based on acidic drugs can be isolated with quaternary amine bonded silica or Si-NH2 as an anion exchange, for basic drugs strong cation exchange, Si-SCX and week cation exchange, Si-WCX can be used for isolating the cationic analytes [36].

5.3 Separation and Detection Instrumentation

Liquid chromatography-UV (LC-UV)

The high performance liquid chromatography (HPLC) is commonly used technique in bioanalysis. The main detector used in HPLC is UV-visible detector. Due to the wide range of selectivity of HPLC column; it is applied for separation of the drug and many metabolites in different matrices [36].

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

Liquid chromatography-tandem mass spectroscopy is having high selectivity as an important tool in drug discovery. It has advantages to reduced analysis time [36].

Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS)

As compared to the LC, UPLC has many advantages such as higher resolution, high peak capacity, improved sensitivity and high speed of analysis, and reduced the ion suppression. The UPLC is used for smaller particles (<2.5 μm) and higher flow rates [36].

Supercritical fluid chromatography-Tandem mass spectrometry (SFC-MS/MS)

As compared to the HPLC, SFC has some advantage like rapid separation without using
hazardous organic solvents. The diffusion rate of solute in supercritical fluid is ten times greater than organic solvents in LC. This technique has higher flow rate and higher sample capacity for determination of different drugs and metabolites in biological fluids [36].

5.4 Validation Parameters [39]

1. Linearity

The ability of the method to obtain test result that is directly proportional to the concentration of analyte in the sample. The linearity of the method must be determined regardless of the drug development phase.

2. Selectivity (specificity)

The ability to assess unequivocally the analyte in the presence of expected component, which may consist of excipient, degradant etc. For high performance liquid chromatography (HPLC) identification test, peak purity evaluation should be used to assess the homogeneity of the peak corresponding to the analyte of interest.

3. Calibration model

The selection of an appropriate calibration model is necessary for reliable quantification of components. This can be done by sample analyzing and plotting of response verses corresponding concentration.

4. Precision and repeatability

The repeatability means closeness of agreement of a series of measurements under the same operating conditions over a short interval of time. It can be evaluated by performing a minimum of six replicate of a single sample solution prepared at the 100% test concentration. Intermediate precision performed within-laboratory variations such as different analyte, different days, and different equipment’s. The repeatability also termed intra-assay precision and within day precision.

5. Intermediate Precision

The intermediate precision expresses within-laboratories variations: different analytes, different days, different equipment’s, etc. Intermediate precision is also called between-day, between-run, or inter-assay precision.

6. Reproducibility

The reproducibility expresses the precision between laboratories; it is usually applied to standardization of methodology. The reproducibility study a proposed method used in different laboratories [39,40].

7. Limit of detection

According to the ICH, limit of detection (LOD) means the lowest concentration of an analyte in a sample which is can be detected but not quantified as an exact value.

8. Limit of quantification

The limit of quantification (LOQ) is the lowest amount of concentration of analyte in a sample that can be quantitatively determined with suitable precision and accuracy [39,41].

9. Robustness

The ruggedness is a measure for the susceptibility of a method to small changes that might occur during the analysis like small changes of (mobile phase composition, temperature, pH values etc). it can be very helpful during the method development/prevalidation phase.

Stability

The chemical stability of an analyte in a matrix under specific conditions for given time of intervals. The stability of the analyte during the analytical procedure is a prerequisite for reliable quantification.

Long term stability

Inprocess stability

6. CLASSIFICATION OF ORAL ANTIDIABETIC DRUGS [42]

1. Enhance Insulin Secretion

A) KATP channelblockers

a) Sulfonylurea – Tolbutamide, Glibenclamide, Glipizide, Gliclazide,Glimepiride
b) Meglitide/Phenylamine analogues – Repaglinide, Nateglinide
B) Dipeptidyl peptidase -4 (DPP-4) inhibitors
 - Sitagliptin, Vildagliptin, Saxagliptin, Alogliptin, Linagliptin, Teneligliptin

2. Overcome Insulin Resistance
 a) Biguanide (AMPk activator) – Metformin
 b) Thiazolidinedione (PPARγ activator) – Pioglitazone, Troglitazone

3. Miscellaneous drugs
 a) α – Glucosidase inhibitors- Acarbose, Migtitol, Voglibose
 b) Amylin analogue -Pramlintide
 c) Dopamine D2 agonist – Bromocriptine
 d) Sod-glucose cotransport-2 (SGPT-2) inhibitors – Dapagliflozin, Canagliflozin, Empagliflozin.

7. CATEGORY WISE ANALYTICAL PERSPECTIVES OF ANTIDIABETIC DRUGS

Various drugs from different class of ant diabetic drugs were studied for study related to impurity profiling and force degradation. The study was based on following analytical perspectives.

- **Column**–Column is one of the most important parts of chromatographic techniques where separation of analyte is performed. Column dimensions, chemistry of column, nature of stationary phase filled in column, particle size of stationary phase are important parameters for separation of different components from a mixture. C18 are widely used column while other C8, Phenyl, Amino, Carbohydrate ES, Cyano, Silica, HILIC column used wherever they are suitable. Fig. 4.
 - **Type of elution** – Both Isocratic and Gradient elution are widely used. Fig. 5.
 - **Matrix** –Maximum work is carried out on an Active pharmaceutical ingredients followed by Tablets are used for impurity profiling and force degradation study. Fig. 6.
 - **Categories** - Anti-diabetic drugs (Oral hypoglycemic agents) categories as Dipeptidyl peptidase -4inhibitors, K-ATP channel blockers, Sulfonylureas, Alpha-Glucosidase inhibitors, Sodium glucose co-transport-2 inhibitors, Biguanide and Thiazolidinedione. The impurity profiling and forced degradation study are carried out on drugs belongs to these categories. Fig. 7.
 - **Chromatographic techniques** – The HPLC is widely used technique while UPLC, HILIC, HPTLC are also used for the separation of mixtures. Fig. 8.
 - **Detectors** - PDA detector are widely used as compared to UV and MS. Fig. 9.

![Fig. 4. Different column used for of Impurity and Forced degradation profiling of Antidiabetic drugs](image-url)
Fig. 5. Types of Elution performed in analysis for Impurity degradation profiling of Antidiabetic drugs

Fig. 6. Different matrix used for Impurity and Forced degradation profiling of Antidiabetic drug

Fig. 7. Categories of Antidiabetic drugs on which impurity profiling and forced degradation are studied
Fig. 8. Different Chromatographic Technique used for Impurity and Forced degradation profiling of Antidiabetic drugs

Fig. 9. Different detectors used for Impurity and Forced degradation profiling of Antidiabetic drugs
7. Methods of impurity profiling, forced degradation and bioanalytical for oral antidiabetic drugs

<table>
<thead>
<tr>
<th>Sr. no</th>
<th>Name of drug</th>
<th>API/dosage form</th>
<th>Impurity/Degradant/Biological Matrix</th>
<th>Chromatographic Conditions</th>
<th>Detection</th>
<th>Year (Ref.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stationary Phase</td>
<td>Mobile Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ENHANCE INSULIN SECRETION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) KATP channel blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Sulfonylurea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Glibenclamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Josephi ne Tella, et al</td>
<td>Tablet</td>
<td>1 sulfonamide impurity</td>
<td>C$_{18}$ stainless steel column (250×4.5 mm, 5μm)</td>
<td>Acetonitrile: potassium dihydrogen orthophosphate (pH 3) (43:57 v/v) (Isocratic elution)</td>
<td>250 nm (UV- Visible)</td>
</tr>
<tr>
<td></td>
<td>Ehab F Eikady et al</td>
<td>Tablet</td>
<td>Human Plasma</td>
<td>Kromasil 100-C18, (30 × 0.4 cm, 10 μm)</td>
<td>Acetonitrile: 0.05M potassium dihydrogen phosphate (MKP) and 0.01M sodium octane sulphonate (SOS) (pH 3.55). flow rate -0.85 ml/min</td>
<td>220 nm (UV)</td>
</tr>
<tr>
<td>2</td>
<td>Glipizide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gulshan Bansal et al</td>
<td>API</td>
<td>6 Degradants</td>
<td>Spherisorb C18 (250×4.6mm, 5μm)</td>
<td>20Mm Ammonium acetate buffer (pH3): CAN (60:40 v/v) (Isocratic elution)</td>
<td>230 nm LC-MS</td>
</tr>
<tr>
<td></td>
<td>Anna Gumieniczek et al</td>
<td>API</td>
<td>1 Degradants</td>
<td>Poroshell 120SB-C18 Column (100×3mm, 2.5μm)</td>
<td>0.067M Phosphate buffer(pH 4.3): ACN (60:40 v/v) (Isocratic)</td>
<td>230 nm LC-MS</td>
</tr>
<tr>
<td></td>
<td>Sakshi Gupta et al</td>
<td>API</td>
<td>4 Degradants</td>
<td>X Terra C18 (250mm×4.5m, 5μm)</td>
<td>A-Buffer (0.005M KH$_2$PO$_4$, pH3) + methanol (60:40 v/v) B – Same as above (20:80 v/v) (Gradients)</td>
<td>230 nm (UV)</td>
</tr>
<tr>
<td></td>
<td>Tina M. Binz and et al</td>
<td>API</td>
<td>Serum</td>
<td>UPLC over a C18 column</td>
<td>Waters Xevo TQ MS mass spectrometer LC–MS/MS method</td>
<td>LC–MS/MS</td>
</tr>
<tr>
<td>Author(s)</td>
<td>API</td>
<td>Sample Type</td>
<td>Column</td>
<td>Mobile Phase</td>
<td>Detection</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>K.S. Lakshmi et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>Phenomenex C18 column (150 x 4.6 mm, i.d., 5 μm)</td>
<td>Mixture of 0.05% Triethylamine, acetonitrile and methanol in the ratio of 55:15:30 flow rate: 1 ml min⁻¹</td>
<td>248 nm</td>
<td>2011 [49]</td>
</tr>
<tr>
<td>Gulshan Bansal et al</td>
<td>API</td>
<td>6 Degradants</td>
<td>Spherisorb C18 (250 x 4.6 mm, 5 μm)</td>
<td>ACN: Ammonium acetate (25 mM) (40:60 v/v) (Isocratic)</td>
<td>235 nm</td>
<td>2008 [50]</td>
</tr>
<tr>
<td>Shraddha Pawar et al</td>
<td>Tablet</td>
<td>Glimepiride related - 3 and Metformin related - 1 Impurity</td>
<td>Water symmetry C8 (4.6 mm x 250 mm, 5 μm)</td>
<td>A- Pentane sulfonic acid sodium salt buffer (pH 3.5) + dil. orthophosphoric acid B- ACN (Gradient)</td>
<td>230 nm (PDA)</td>
<td>2010 [51]</td>
</tr>
<tr>
<td>Gulshan Bansal et al</td>
<td>API</td>
<td>5 Degradants</td>
<td>Spherisorb C18 (150 mm x 4.6 mm, 5 μm)</td>
<td>ACN: Ammonium acetate (pH 3.0-0.2 M) (20:80 v/v) (Isocratic)</td>
<td>235 nm (PDA) LC-MS</td>
<td>2008 [52]</td>
</tr>
<tr>
<td>Shraddha Pawar et al</td>
<td>Tablet</td>
<td>Glimepiride related - 3 and Metformin related - 1 Impurity</td>
<td>Water symmetry C8 (4.6 mm x 250 mm, 5 μm)</td>
<td>A- Pentane sulfonic acid sodium salt buffer (pH 3.5) + dil. orthophosphoric acid B- ACN (Gradient)</td>
<td>230 nm (PDA)</td>
<td>2010 [51]</td>
</tr>
<tr>
<td>Jie Zhang and et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>Acuity BEH C18 (100 x 2.1 mm, 1.7 μm)</td>
<td>A – mix. Of 0.05% formic acid in water B – mix. Of 0.05% formic acid in ACN (Gradient elution)</td>
<td>UPLC 210 nm (UV)</td>
<td>2017 [53]</td>
</tr>
<tr>
<td>K.V.S. R Krishna Reddy et al</td>
<td>API</td>
<td>4 Impurities</td>
<td>Hichrome- RPB C18 (250 mm x 4.6 mm, 5 μm)</td>
<td>0.01 M KH₂PO₄ (pH 3.5): CAN(50:50 v/v)(Isocratic) acetonitrile–ammonium acetate buffer</td>
<td>200 nm (PDA)</td>
<td>2003 [54]</td>
</tr>
<tr>
<td>Jie Zhang and et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>XDB-C18 column</td>
<td></td>
<td>LC-MS/MS</td>
<td>2011 [55]</td>
</tr>
<tr>
<td>B) Dipeptidyl peptidase 4-(DPP-4) inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.B.N. Prasad et al.</td>
<td>API</td>
<td>2 Impurities</td>
<td>Unison-US C8 (150 x 4.6 mm, 5 μm)</td>
<td>A- mix. Of buffer (pH 7.2) and ACN (9:1 v/v) B- mix. Of buffer pH 7.2 and ACN (7:3 v/v)</td>
<td>210 nm (PDA)</td>
<td>2018 [56]</td>
</tr>
<tr>
<td>Author(s)</td>
<td>API</td>
<td>Degradants</td>
<td>Column (Dimensions)</td>
<td>Mobile Phase</td>
<td>Detection</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>F.I. Farooqui et al</td>
<td>API</td>
<td>3 Degradants</td>
<td>Water Cosmosil C18 (250×4.6mm,5µm)</td>
<td>5mM Ammonium acetate: methanol (Gradient)</td>
<td>268nm (PDA) MS, NMR</td>
<td>2016 [57]</td>
</tr>
<tr>
<td>Dnyaneshwar P. et al</td>
<td>API</td>
<td>API-3 Tablet-2 Degradants</td>
<td>Agilent PrepHT XDB-C18 (21.2×150mm,5µm)</td>
<td>5mM Ammonium acetate in water:ACN (Gradient)</td>
<td>210nm (PDA)</td>
<td>2013 [58]</td>
</tr>
<tr>
<td>Wei Zeng et al</td>
<td>API</td>
<td>Human plasma</td>
<td>Waters Atlantis HILIC Silica column (2.1mm×50mm, 3 _m).</td>
<td>ACN/H2O (80/20 v/v)</td>
<td>LC–MS/MS</td>
<td>2010 [59]</td>
</tr>
<tr>
<td>Maike Scherf-Clavel et al</td>
<td>API</td>
<td>Human Dried Blood Spot (DBS)</td>
<td></td>
<td></td>
<td>HPLC/UV and LC-ESI–MS/MS</td>
<td>2015 [60]</td>
</tr>
<tr>
<td>Srinivasa Reddy et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>SCX column</td>
<td>20mM ammonium acetate(pH4.5): acetonitrile:50:50 v/v</td>
<td>LC–MS/MS</td>
<td>2015 [61]</td>
</tr>
</tbody>
</table>

7. Vildagliptin

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>API</th>
<th>PRI</th>
<th>Column (Dimensions)</th>
<th>Mobile Phase</th>
<th>Detection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neeraj Kumar et al</td>
<td>API</td>
<td>2 PRI</td>
<td>Waters X Bridge C-18 (250×4.6mm,5µm)</td>
<td>A- 0.05% Ammonia solution(pH 9.2) B- mix. Of methanol and ACN(50:50v/v) (Gradient elution)</td>
<td>210nm (PDA) LC/ESI-MS</td>
<td>2015 [62]</td>
</tr>
<tr>
<td>Ramzia I. ElBagary et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>5 cm UPLC-C18 column</td>
<td>0.5% acetic acid in methanol and 0.02 M aqueous ammonium acetate (10:90 v/v)</td>
<td>UPLC–MS/MS</td>
<td>2016 [63]</td>
</tr>
<tr>
<td>Roberto Pontarolo et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>Atlantis HILIC Silica 150-mm × 2.1-mm</td>
<td>20% water and 80% acetonitrile/water solution 95:5 (v/v) The flow rate at 400 L min⁻¹.</td>
<td>HILIC–MS/MS method</td>
<td>2014 [64]</td>
</tr>
</tbody>
</table>

8. Saxagliptin

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>API</th>
<th>Degradants</th>
<th>Column (Dimensions)</th>
<th>Mobile Phase</th>
<th>Detection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.I. Farooqui et al</td>
<td>API</td>
<td>3 Degradants</td>
<td>Hypersil BDS C18 (250×4.6mm,5µm)</td>
<td>Water: ACN (Gradient elution)</td>
<td>231nm (PDA)</td>
<td>2016 [65]</td>
</tr>
</tbody>
</table>

9. Alogliptin Benzoate

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>API</th>
<th>PRI</th>
<th>Column (Dimensions)</th>
<th>Mobile Phase</th>
<th>Detection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kun Zhang and et al</td>
<td>API</td>
<td>7 PRI</td>
<td>Zorbax SBCN column (250×4.6mm5µm)</td>
<td>A- Water: ACN: Trifluoroacetic</td>
<td>278nm (DAD)</td>
<td>2015 [66]</td>
</tr>
</tbody>
</table>
10 Linagliptin

Sushant B. Jadhav et al

| API | 3 Degradants | Zorbax SB-Aq(250×4.6mm, 5μm) | A- KH₂PO₄ buffer (0.02M) pH3 B-ACN: methanol (90:10v/ v) (Gradient elution) | 225nm (PDA) LC-MS | 2017 [69] |

Raquel Balestri et al

| Tablet | 3 synthetic impurities | Thermo Scientific (RP-8) column (100×4.6mm,5μm) | 0.1%formic acid(pH3.5): ACN(Gradient) | 294nm (PDA) UPLC228nm ESI-MS/MS | 2019 [70] |

Yiwen Huang et al

| API | 1 PRI, and 1 Degradant | Water Acquity BEH C18(50×2.1mm, 1.7μm) | A-20mM KH₂PO₄ B-ACN: methanol(50:50v/ v) (Gradient) | 298nm | 2018 [71] |

Bashar Al- sabti et al

| API | 1 Impurity- (3-aminopyridine) | TRACEREXTRASIL silica (150×4mm,3μm) | A-10Mm Ammonium Acetate pH6 in water B-ACN(10:90v/v) (Isocratic) | HILIC- UV | 2020 [72] |

Sharmila donepudi, et al

| API | Human Plasma discovery c₁₈ (250×4.6x5µm) column, | buffer: acetonitrile (68:32) | 218nm (UV) | 2018 [73] |

11 Teneligliptin

Ganesh Kumar et al

| API | 7 Degradants | Kromasil 100-5C18 (250×4.6mm, 5μm) | Phosphate buffer (pH6): ACN(60:40v/v) (Isocratic) | 246nm (UV) UPLC- MS/MS | 2016 [74] |

2. OVERCOME INSULIN RESISTANCE
a) Biguanide (AM Pk activator)

12 Metformin HCl

Rajan. V. Rele et al

<p>| Tablet | 1 Impurity | Inertsil ODS 3V, | Mix. of Trifluoroacetic acid in | 218nm | 2018 |</p>
<table>
<thead>
<tr>
<th>Authors</th>
<th>Type</th>
<th>Impurities</th>
<th>Column</th>
<th>Mobile Phase</th>
<th>Detection</th>
<th>Year</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabriela klaczkow et al</td>
<td>Tablet</td>
<td>3 Impurities</td>
<td>(N, N-Dimethyl amidino) 250×4.6mm, 5μm</td>
<td>Water: ACN (98:2 v/v) (Gradient 1.7%(w/v) ammonium dihydrogen phosphate water solution (pH3.1) (Isocratic)</td>
<td>(DAD)</td>
<td>[75]</td>
<td></td>
</tr>
<tr>
<td>T. Sudha et al</td>
<td>Tablet</td>
<td>3 Impurities</td>
<td>Inertsil ODS 3V 250×4.6mm, 5μm</td>
<td>Buffer (pH 3.6): ACN 218nm 2010</td>
<td>UV-Visible</td>
<td>[76]</td>
<td></td>
</tr>
<tr>
<td>F.Al.Rimavi et al</td>
<td>Tablet</td>
<td>1 Impurity</td>
<td>(1-Cyanoguandine) Nova-Pak 250×4.6mm, 5μm</td>
<td>Ammonium dihydrogen phosphate (pH 5): Methanol(21:79 v/v) (Isocratic)</td>
<td>218nm 2013</td>
<td>[77]</td>
<td></td>
</tr>
<tr>
<td>Hiren N. Mistriand et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>reverse phase C18 50mm×4.6mm i.d., 5μm column</td>
<td>Acetonitrile 10 mM ammonium acetate (20:80, v/v)</td>
<td>LC-MS/MS 2007</td>
<td>[79]</td>
<td></td>
</tr>
<tr>
<td>B. Jagadeesh, D. et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>Reverse Phase</td>
<td>ESI-MS/MS 2013</td>
<td>2013</td>
<td>[80]</td>
<td></td>
</tr>
<tr>
<td>Lingyun Chen et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>C18 column 50 mm, 2.1 mm, 3.5 μm</td>
<td>Acetonitrile and 10 mM ammonium acetate (pH 3.0) 60:40 (v/v) Flow rate: 1.1 mL/min</td>
<td>tandem mass spectrometry via electrospray ionization 2011</td>
<td>[81]</td>
<td></td>
</tr>
<tr>
<td>Asmaa A. El-Zaher et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>Zorbax c18 column 50x4.6mm, 5m</td>
<td>Acetonitrile: 0.1% formic acid (45:55 v/v)</td>
<td>LC-MS/MS 2019</td>
<td>[82]</td>
<td></td>
</tr>
<tr>
<td>Srinivasa Rao Polagania et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>All tima HP C18 column</td>
<td>Acetonitrile and 10 mM ammonium acetate (pH 3.0) 60:40 (v/v) Flow rate: 1.1 mL/min</td>
<td>LC-MS/ MS 2013</td>
<td>[83]</td>
<td></td>
</tr>
<tr>
<td>Pawan K. Porwaland et al</td>
<td>API</td>
<td>Human Plasma</td>
<td>Water's Novapack Phenyl (150 mm 4.6 mm, i.d., 5.0 lm) column</td>
<td>0.1% Phosphoric acid (pH 3.0) and acetonitrile (ACN) 227 nm UV</td>
<td>2016</td>
<td>[84]</td>
<td></td>
</tr>
</tbody>
</table>

Pioglitazone

<table>
<thead>
<tr>
<th>Authors</th>
<th>Type</th>
<th>Impurities</th>
<th>Column</th>
<th>Mobile Phase</th>
<th>Detection</th>
<th>Year</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y.R Kumar and et</td>
<td>API</td>
<td>3 Impurities</td>
<td>Hichrome RPB column 0.01 M KH₂PO₄ (pH 6): ACN</td>
<td>225nm</td>
<td>2004</td>
<td>[85]</td>
<td></td>
</tr>
</tbody>
</table>
Gregory A. Knock and et al

In rat conventional whole cell patch clamp technique compared the effects of troglitazone and rosiglitazone on Ca2+ and K+ currents in rat aorta and pulmonary artery smooth muscle cells. Both drugs reduced the voltage-gated L-type.

Vijaya Kumari Karra et al

Human Plasma C18 column acetonitrile and 0.1% formic acid (80:20 v/v) LC-MS/MS 2012

MISCELLANEOUS DRUGS

a) α-Glucosidase inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>API</th>
<th>Impurities</th>
<th>Column</th>
<th>Solution</th>
<th>Detection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acarbose</td>
<td>Predrag Novak et al</td>
<td>3</td>
<td>NH2 Hibar Lichrospher LC Column (250×4mm, 5µm)</td>
<td>ACN: Water (71:29 v/v) (Isocratic)</td>
<td>210nm (DAD) LC-MS LC- NMR</td>
<td>2005</td>
</tr>
<tr>
<td>Miglitol</td>
<td>Kesavan Balakumaran et al</td>
<td>6 PRI</td>
<td>Prevail Carbohydrate ES column (250×4.6mm, 3.5µm)</td>
<td>A-10mM dipotassium hydrogen orthophosphate in water (pH8) B-CAN (Gradient)</td>
<td>210nm LC-MS</td>
<td>2016</td>
</tr>
</tbody>
</table>

b) Sodium-glucose cotransporter-2 (SGLT-2) Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>API</th>
<th>Identities</th>
<th>Column</th>
<th>Solution</th>
<th>Detection</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canagliflozin</td>
<td>Amit Gosar et al</td>
<td>1 (Potential genotoxic hydroperoxide impurity)</td>
<td>Kromasil C18 (250×4.6mm, 5µm)</td>
<td>A-20mM Potassium dihydrogen Phosphate solution: ACN (Gradient)</td>
<td>341nm (UV)</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Somarouthu Venkata Sai Baba et al</td>
<td>Human plasma</td>
<td>Zodiac C18 (100mm×4.6mm, 5µm)</td>
<td>2mM ammonium acetate and methanol (15:85, v/v)</td>
<td>LC-MS/MS</td>
<td>2018</td>
</tr>
<tr>
<td>Study</td>
<td>API</td>
<td>Target</td>
<td>Methodology</td>
<td>Mobile Phase</td>
<td>Wavelength</td>
<td>Year</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Mokhtar M. Mabrouk et al</td>
<td>API</td>
<td>3 Impurities</td>
<td>Acquity UPLC, BEHC18 (50×2.1mm, 1.7μm)</td>
<td>Trifluoroacetic acid: ACN (60:40v/v) (Isocratic)</td>
<td>210nm</td>
<td>UPLC-DAD</td>
</tr>
<tr>
<td>Sushil H. Jaiswal et al</td>
<td>API</td>
<td>4 PRI</td>
<td>Inertsil C8 (250×4.6mm, 5μm)</td>
<td>0.1% Orthophosphoric acid: ACN</td>
<td>230nm</td>
<td>PDA</td>
</tr>
<tr>
<td>Varaprasad Jagadabi et al</td>
<td>Tablet</td>
<td>Empagliflozin related-5, Linagliptin related-6 Degradants</td>
<td>Luna Omega Polar C18 (100×2.1mm, 1.6μm)</td>
<td>KH2PO4 (pH3)</td>
<td>LC-QD</td>
<td>2018 [95]</td>
</tr>
<tr>
<td>Prakash Niguram et al</td>
<td>API</td>
<td>12 Degradants</td>
<td>Eclipse plus C18 RRHD (2.1×50mm, 1.8μm)</td>
<td>Water with 0.1% formic acid: methanol (50:50v/v) (Isocratic)</td>
<td>UHPLC-MS, LC-ESI-QTOF-MS</td>
<td>2019 [96]</td>
</tr>
<tr>
<td>Ritesh P.Bhole</td>
<td>Tablet</td>
<td>3 Degradants</td>
<td>10×10 Aluminum plate precoated with silica gel</td>
<td>Toluene: methanol (7:3v/v)</td>
<td>228nm</td>
<td>HPTLC-MS</td>
</tr>
</tbody>
</table>
8. CONCLUSION

This review article provides information regarding analytical methods used for identification and characterization of impurities and degradation products of antidiabetic drugs. The analytical techniques employed for impurity analysis were the HPLC, UPLC, LC-MS, LC-NMR, HPTLC, and HILIC. Among all these analytical techniques the most widely used technique is the HPLC and LC-MS. This review consequently focuses on basic aspects of impurities in drug substance and drug products, forced degradation and bioanalytical methods which will be helpful to researchers engaged in said areas for the analysis of antidiabetic drugs. Although different regulatory bodies have provided individual guidelines describing identities and permissible limits of all said methods.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

The authors are very much thankful to Management and Principal Dr.M.J.Chavan of Amrutvahini College of Pharmacy, Sangamner, M.S., India.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

6. ICH, Impurities in new drug substances Q3A (R2). In: International Conference on Harmonization. ICPMA, Geneva (Switzerland); 2006
7. ICH, Impurities: Guideline for Residual Solvents Q3C (R6), in: International Conference on Harmonization, IFPMA, Geneva (Switzerland); 2016.
17. Salunkhe MN, Gite SD, Kachave RN. Recent trends in impurity profiling and forced degradation of antihypertensive
Deshpande et al.; JPRI, 34(34B): 43-71, 2022; Article no.JPRI.70722

20. ICH, Stability testing of new drug substances and products Q1A (R2). in: International Conference on Harmonization, IFPMA, Geneva (Switzerland); 2003.
22. ICH, Stability testing for new dosage forms Q1C. in: International Conference on Harmonization, IFPMA, Geneva (Switzerland); 1996.
23. ICH, Bracketing and Matrixing designs for stability testing of new drug substances and products Q1D. in: International Conference on Harmonization, IFPMA, Geneva (Switzerland); 2002.
34. ICH, Impurities in new drug products Q3B (R2). in: International Conference on Harmonization, IFPMA, Geneva (Switzerland); 2006.

61. Maike Scherf-Clavel, Petra Hogger. Analysis of metformin, sitagliptin and creatinine in human dried blood

78. Al-Rimawi F. Development and validation of an analytical method for metformin

84. Pawan K Porwal, Gokul S Talele. Development of validated HPLC-UV method for simultaneous determination of Metformin, Amlodipine, Glibenclamide and Atorvastatin in human plasma and application to protein binding studies, Bulletin of Faculty of Pharmacy, Cairo University; 2016.

94. Jaiswal SH. Validated stability indicating hplc method for determination of process related impurities in empagliflozin drug

© 2022 Deshpande et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/70722