Antimicrobial and Biochemical Properties of *Linum usitatissimum* the Flax Seeds and *Syzygium aromaticum*

Sumbal Babar a, Iqra Rafi b, Adeel Iqbal c, Aisha Nawaz d, Tahira Leghari a, Muhammad Khawar Abbas e, Muhammad Mohsin Zaman e, Faheem Hadi a, Tahir Maqbool a, Nazar Hussain f and Qurban Ali a*

a Institute of Molecular Biology and Biotechnology, the University of Lahore, Pakistan.
b University College of Medicine and Dentistry, the University of Lahore, Pakistan.
c District Head Quarter Hospital, Kasur, Pakistan.
d Department of Biochemistry, University of Central Punjab, Lahore, Pakistan.
e University College of Conventional Medicine, the Islamia University of Bahawalpur, Pakistan.
f Department of Continuing Education, Faculty of Social Sciences, University of Agriculture Faisalabad, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i18B35792

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/79786

Received 23 December 2021
Accepted 26 February 2022
Published 04 March 2022

ABSTRACT

Introduction: The current research was performed to evaluate antimicrobial, anti-fungal and biochemical properties of *Linum usitatissimum* (flax seeds) and *Syzygium aromaticum* (clove). Flaxseeds is one of dietary sources containing phenolics, named lignans. *Syzygium aromaticum* ordinarily called clove is generally considered second important flavor in world and is broadly developed in North Maluku Islands in Indonesia. Glycosides, saponins, flavonoids, steroids, tannins, alkaloids, terpenes, and other phytochemical constituents have been shown to have pharmacological actions in different activities. *Syzygium aromaticum* (clove) and *Linum usitatissimum* (flax) have unique pharmacological effects and have been utilized for food safety.

Materials and Methods: In this study, ethanolic, methanolic and aqueous extracts of *Linum usitatissimum* and *Syzygium aromaticum* were evaluated against the 3 bacterial strains and 2 contagious fungal strains viz. *A. niger* and *F. solani*.

*Corresponding author: E-mail: saim1692@gamil.com;
Results: Among the bacterial strains i.e., *E. coli*, *P. syringae* and *B. subtilis*, antimicrobial action was noted by *Syzygium aromaticum* against *E. coli*, methanolic and aqueous extract of *Linum usitatissimum* and ethanolic extract of *S. aromaticum* showed antimicrobial action against the *P. syringae* and *B. subtilis*. Best antimicrobial action was observed by the ethanolic extract of the *L. usitatissimum* and methanolic and aqueous extract of *S. aromaticum*. Regarding parasitic strains of *A. niger* and *F. solani*, 3 extracts of *L. usitatissimum* showed satisfactory results against *A. niger* strain and 2 extracts (ethanolic and methanolic) of *S. aromaticum* against *F. solani* strain, whereas aqueous extracts of both the plants had no effect against *F. solani* strain. The phytochemical screening showed presence of terpenoids, tannins, flavonoids, saponins and cardiovascular glycosides in both plants.

Conclusion: Flaxseed and clove extracts were found potent antimicrobial agents.

Keywords: Anti-microbial; Anti-fungal; *Linum usitatissimum*; *Syzygium aromaticum*; *F. solani*; *A. niger*; *B. subtilis*; *E. coli*.

1. INTRODUCTION

Plants have been used for different therapeutic purposes since ancient times [1]. Most of agricultural nations rely on plants for medicinal needs as well as plants are also part of conventional medications [2]. More than half of world population use plants as medicine due to their easy access and cheap price [3]. Plants are also part of many home remedies in societies and customs of Asia, Latin America and Africa, which is not documented in any scientific forum [4]. Many therapeutic plants have been evaluated for their different pharmacological actions against many illnesses. This has been achieved by complete screening of medicinal plants as likely new mixtures of lead compounds in drug advancement were found [5-8].

Clove plants produce phytohormone during the pre-blooming stage [9]. Cinnamon, oregano, clove, thyme, and mint have been shown to have antibacterial, antiviral, anticarcinogenic and antifungal properties in a couple of studies. Clove, on the other hand, has sparked a lot of interest among other flavors due to its remarkable antibacterial and malignant growth predictor abilities [5]. The fundamental oil of *S. aromaticum* buds is broadly utilized in gainful applications, especially in dentistry [10,11]. The focal oil is compelling against oral microbial microscopically organisms that cause dental pits and periodontal sickness, caused by *Listeria monocytogenes*, *Escherichia coli*, *Salmonella enterica*, *Salmonella enteritidis*, *Campylobacter jejuni* and *Staphylococcus aureus* etc [12-15]. In Korea, clove oil (*Syzygium aromaticum*) is widely used as a fragrance and spice, as well as a pharmaceutical for the treatment of asthma and other negatively vulnerable conditions, and in clinical dental treatments as a general sterile [16]. Clove oil has antimicrobial properties against a variety of infectious microorganisms, including those that cause urogenital illness. Clove oil has been discovered to have potent antifungal activity in case of pathogenic bacteria and fungi like *Candida albicans*, *Cryptococcus neoformans* and *Aspergillus fumigatus*. Eugenol from cloves is the primary component responsible for its antifungal activity [17-20].

Linseed has very old history of medicinal potential, with its primary effects as being diuretic as well as pain relieving, demulcent, emollient, purgative, pectoral and resolvent [20-24]. This makes flaxseed oil extremely helpful for shivering just as for nerve sicknesses such as in Parkinson’s and Alzheimer's infection. This exceptionally valuable in curing knowledge affiliated issues, for example, ADHD, bipolar confusion, melancholy, menopausal indications, etc [24-26]. Several studies revealed that phytoestrogens derived from flaxseed can effectively stimulate estrogen production in MCF7 breast cancer cells. The impact of flaxseed proteins on a variety of gram positive and gram negative microbes has been studied [27].

2. MATERIALS AND METHODS

2.1 Sample Collection

The both plants *Linum usitatissimum* and *Syzygium aromaticum* are widely used spices and are available in every home and departmental store. The samples of both were taken and ground to the powdered form.

2.2 Extracts of Plant Materials

Ethanolic, methanolic and distilled water extracts of the *Linum usitatissimum* and *Syzygium*
aromaticum were obtained by soaking 20g of the powdered sample in 100 ml of the solvent. After 2 days the soak samples were filtered and the filtrate was concentrated by using rotary apparatus. The remaining thick solution after rotary was taken out in petri-dishes and left on the shelf so that the remaining solvent was evaporated and pure extract was obtained in dried form. Dried solid material left on petri-dishes, was converted to semi solid mass by the addition of few drops of DMSO (Dimethyl sulfoxide). Then the concentrated extract was stored in the eppendorf’s for further use [28].

2.3 Phytochemical Screening

The qualitative chemical tests for terpenoids, flavonoids, saponins, tannins and cardiac glycoside were performed for each extract of both plants by using standard procedures [9].

2.4 Anti-microbial Activity

For the anti-microbial testing the nutrient agar media was made by dissolving 5g peptone, 8g NaCl, 3g yeast extract and 15g agar in 1ltr distilled water. The media was poured in petri dishes and all the petri dishes were placed upside down once the media was solidified. Now by using the disc diffusion method, the plates were streaked, disc were placed and the extracts were poured in the amount of 5µl,10µl and 15µl and then incubated in upside down position for 48 hrs. The zone of inhibition was measured on all the plates and the results were recorded.

3. RESULTS

Table 1 shows the phytochemical screening of the concentrates of Syzygium aromaticum and Linum usitatissimum. Terpenoids, flavonoids, saponins and cardiac glycosides were present in both methanolic and ethanolic extracts of L. usitatissimum but not tannins. On the other hand, flavonoid was present only in the ethanolic extract of S. aromaticum but not in methanolic extract. Table 1 in the refined water concentrate of flax terpenoids, heart glycosides, tannins and saponins were available yet no flavonoids. In the ethanolic concentrate of clove terpenoids, flavonoids and saponins were available however no tannins and heart glycosides. In the methanolic concentrate of clove terpenoids, flavonoids, heart glycosides, tannins and saponins were available yet not present in flavonoids test 2. The distilled water extract of S. aromaticum contained no flavonoids and that of L. usitatissimum did not contain flavonoids (Test 2), tannins and cardiac glycosides (Table 1).

Among the bacterial strains i.e., E. coli, P. syringae and B. subtilis, the best antimicrobial activity was shown by Syzygium aromaticum against the E. coli, methanolic and distilled water extract of Linum usitatissimum and ethanolic extract of S. aromaticum shows much antimicrobial activity against the P. syringae, and against the B. subtilis the best anti-microbial activity was shown by the ethanolic extract of the L. usitatissimum and methanolic and distilled water extract of S. aromaticum (Tables 2 and 3).

Table 1. Phytochemical constituents of ethanolic, methanolic and distilled water extract of Linum usitatissimum and Syzygium aromaticum

<table>
<thead>
<tr>
<th>TESTS</th>
<th>Flax seed Methanolic Extract</th>
<th>Flax seed Ethanolic Extract</th>
<th>Flax seed dH₂O Extract</th>
<th>Clove Methanolic Extract</th>
<th>Clove Ethanolic Extract</th>
<th>Clove dH₂O Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
</tr>
<tr>
<td>Flavonoids (S.aromaticum)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
</tr>
<tr>
<td>Flavonoids (L. usitatissimum)</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>_</td>
</tr>
<tr>
<td>Saponins</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>+</td>
<td>_</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycoside</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Table 2. Anti-bacterial activity (inhibition zone in ‘mm’) of ethanolic, methanolic and distilled water extract of Syzygium aromaticum

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Ethanolic extract</th>
<th>Methanolic extract</th>
<th>Distilled water extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5µl</td>
<td>10µl</td>
<td>15µl</td>
</tr>
<tr>
<td>E. coli</td>
<td>19.6</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>P. syringae</td>
<td>15.3</td>
<td>12</td>
<td>19.3</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>14</td>
<td>16.3</td>
<td>19.6</td>
</tr>
</tbody>
</table>
As for the fungal strains of A. niger and F. solani, the all 3 extracts of Linum usitatissimum shows the best results against the A. niger and the ethanolic and methanolic extracts of Syzygium aromaticum shows the best anti-fungal activity against the F. solani strain. The distilled water extracts of both the plants have no effect against the F. solani strain (Tables 4 and 5).

4. DISCUSSION

Oil from the leaf, bud and stem of Syzygium aromaticum was effective against 23 of 25 Listeria monocite testing microorganisms and all strains at the same time. Lee et al. clarified the antimicrobial activity in which M. gypsum polluted eugenol and nerolidol removed from Japanese cypress oil [29-30]. Their findings suggested that eugenol and nerolidol might be used as beneficial antifungal agents. Nunez et al. showed that the relationship of clove oleoresin with concentrated sugar has a strong fungicidal effect against A. niger. Ahmad et al. declared clove oil to have strong antifungal development against C. albicans, C. neoformans and A. treats [31]. The phytochemical analysis of the Syzygium aromaticum and Linum usitatissimum extracts was performed in current study. Flavonoids, tannins, saponins and cardiac glycosides have been accessible in the methanol concentrate of fennel terpenoids. Cardiac glycosides were present in the ethanolic extracts. The antifungal screening of essential clove oil of S. aromaticum was also evaluated by Pinto et al. The main oil and eugenol were also inhibitory against many tested strains [32]. The results of Uchôa Lopes were found as shown by clove EO. They did chromatographical TLCs and fragments to check strong anti-fungal property. They mentioned eugenol as the best antifungal component of clove oil against T. mentagrophytes and M. canis dermatophytes [33]. According to current study findings, aqueous extract of clove contains terpenoids, cardiac glycosides, tannins and saponins, however flavonoids were not found. In ethanolic extract of clove, terpenoids, flavonoids and saponins were found, however tannins and cardiac glycosides were not present. In methanolic extract of clove, terpenoids, flavonoids, cardiac glycosides, tannins and saponins were present, however flavonoids were not found as evidenced by test 2 [34]. The ethanolic, methanolic and aqueous extracts of L. usitatissimum and S. aromaticum have the phytochemicals that has antimicrobial property. Previous studies showed the presence of phytochemicals in plants that displayed antimicrobial potential like tannins, phenols, alkaloids, saponins, flavonoids and glycosides [35-37]. In ethanolic extracts, tannins, phenols and flavonoids were found, while saponins and glycosides were absent.

<table>
<thead>
<tr>
<th>Micro-Organism</th>
<th>Ethanolic extract</th>
<th>Methanolic extract</th>
<th>Distilled water extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>7.6</td>
<td>8</td>
<td>9.6</td>
</tr>
<tr>
<td>P. syringae</td>
<td>13.6</td>
<td>16.6</td>
<td>26</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>0</td>
<td>9.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micro-Organism</th>
<th>Ethanolic extract</th>
<th>Methanolic extract</th>
<th>Distilled water extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niger</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F. solani</td>
<td>0.001</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micro-Organism</th>
<th>Ethanolic extract</th>
<th>Methanolic extract</th>
<th>Distilled water extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niger</td>
<td>20</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>F. solani</td>
<td>22</td>
<td>23</td>
<td>26.5</td>
</tr>
</tbody>
</table>
5. CONCLUSION

From the results shown in Tables 3, 4, 5, the ethanolic, methanolic and distilled water extracts of *L. usitatissimum* and *S. aromaticum* have the phytochemicals that have anti-microbial and anti-fungal properties and thus can be used as potential medicine.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

14. Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. *Syzygium aromaticum* L. (*Myrtaceae*): Traditional uses, bioactive chemical constituents, pharmacological and
toxicological activities. Biomolecules. 2020;10(2).
34. Ugboegu EA, Elghandour MM, Ipeazu VO, Buendia GR, Molina OM, Arunsi UO, et al. The potential impacts of dietary plant
natural products on the sustainable mitigation of methane emission from livestock farming. Journal of Cleaner Production. 2019;213.

© 2022 Babar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/79786