A Systematic Literature Review of Current Therapeutic Approaches for COVID-19 Patients

Main Article Content

Saber Soltani
Amir Mohammad Zakeri
Mohammad Reza Karimi
Sara Akhavan Rezayat
Fateme Zomorodi Anbaji
Alireza Tabibzadeh
Parastoo Yousefi
Armin Zakeri
Ali Jafarpour
Mehdi Norouzi
Yousef Erfani
Vahdat Poortahmasebi

Abstract

Background: In December 2019, the pneumonia outbreak reported in Wuhan, Hubei Province, China. WHO introduced a novel coronavirus and the virus named Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) in January 2020. There are not any specific antiviral agents for coronavirus disease 19 (COVID‐19).

Objective: Our review aimed to discuss treatment options and the efficacy of currently prescribed drugs and supportive care in COVID‐19 patients.

Study Design: A literature review of the articles in the Web of Science, PubMed, Scopus and EMBASE conducted.

Results: Lopinavir/ritonavir combination was the most frequently used drug, followed by Arbidol and Oseltamivir and Methylprednisolone. Lopinavir/Ritonavir outcome showed the fever and respiratory infection improve in day two and day eight, respectively. Also, negative PCR of SARS‐CoV‐2 in days six and 7day was seen and finally these patients discharged in 10 days.

Conclusions: Lopinavir/Ritonavir was the most improving administrated antiviral combination, which might be a good option for COVID-19 due to its availability. Although supportive care such as O2 supplementary and IV fluid therapy has improved outcomes. There are not evidence for suggesting a new treatment or a new drug, which mean the necessity of further investigations for drug research in a clinical trial for a conclusion about the optimum treatment.

Keywords:
Coronavirus, SARS virus, severe acute respiratory syndrome-related coronavirus 2, COVID-19, antiviral agents, drug therapy, therapeutics

Article Details

How to Cite
Soltani, S., Zakeri, A. M., Karimi, M. R., Rezayat, S. A., Anbaji, F. Z., Tabibzadeh, A., Yousefi, P., Zakeri, A., Jafarpour, A., Norouzi, M., Erfani, Y., & Poortahmasebi, V. (2020). A Systematic Literature Review of Current Therapeutic Approaches for COVID-19 Patients. Journal of Pharmaceutical Research International, 32(7), 13-25. https://doi.org/10.9734/jpri/2020/v32i730455
Section
Review Article

References

Bradley BT, Bryan A, editors. Emerging Respiratory Infections: The infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella. Seminars in diagnostic pathology; 2019: Elsevier.

World Health Organization. Coronavirus disease; 2019 (COVID-19) Situation Report – 72; 2020.
Available:https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200424-sitrep-95-covid-19.pdf?sfvrsn=e8065831_4

Yuan H, Cao X, Ji X, Du F, Zhou X, He J, et al. A Current emerging respiratory infection: Epidemiological and clinical characteristics, diagnosis and treatments of COVID-19. Diagnosis and Treatments of COVID-19 (3/6/2020); 2020.

Chen L, Zhong L. The PDZ-binding Motif of SARS-CoV envelope protein induces cancerization and poor prognosis of lung adenocarcinoma; 2020.

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nature Medicine. 2020;1-3.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell; 2020.

Ou J, Zhou Z, Zhang J, Lan W, Zhao S, Wu J, et al. RBD mutations from circulating SARS-CoV-2 strains enhance the structure stability and infectivity of the spike protein. bioRxiv; 2020.

Xie L, Sun C, Luo C, Zhang Y, Zhang J, Yang J, et al. SARS-CoV-2 and SARS-CoV Spike-RBD structure and receptor binding comparison and potential implications on neutralizing antibody and vaccine development. bioRxiv; 2020.

Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020;1-8.

Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF. MERS, SARS and Ebola: The role of super-spreaders in infectious disease. Cell host & microbe. 2015;18(4):398-401.

Sharif-Yakan A, Kanj SS. Emergence of MERS-CoV in the Middle East: origins, transmission, treatment and perspectives. PLoS pathogens. 2014;10(12).

Sardar T, Ghosh I, Rodó X, Chattopadhyay J. A realistic two-strain model for MERS-CoV infection uncovers the high risk for epidemic propagation. PLOS Neglected Tropical Diseases. 2020; 14(2):e0008065.

Cui S, Hao W. Deducing the Crystal Structure of MERS-CoV Helicase. MERS Coronavirus: Springer. 2020;69-85.

Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. The Lancet. 2015 Sep 5;386(9997):995-1007.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020;30(3):269-71.

Zhang L, Zhou R. Binding Mechanism of Remdesivir to SARS-CoV-2 RNA Dependent RNA Polymerase; 2020.

Choy KT, Wong AYL, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research. 2020;104786.

Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. 2020; 104787.

Han W, Quan B, Guo W, Zhang J, Lu Y, Feng G, et al. The course of clinical diagnosis and treatment of a case infected with coronavirus disease 2019. Journal of medical virology; 2020.

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine; 2020.

Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. Journal of Korean Medical Science. 2020;35(6): e79.

Zhang Z, Li X, Zhang W, Shi ZL, Zheng Z, Wang T. Clinical features and treatment of 2019-nCov Pneumonia Patients in Wuhan: Report of A Couple Cases. Virologica Sinica; 2020.

Wang X, Zhou Z, Zhang J, Zhu F, Tang Y, Shen X. A case of 2019 Novel Coronavirus in a pregnant woman with preterm delivery. Clin Infect Dis; 2020.

Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Bioscience trends; 2020.

Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020;368:m606.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395 (10223):497-506.

Cheng SC, Chang YC, Fan Chiang YL, Chien YC, Cheng M, Yang CH, et al. First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan. Journal of the Formosan Medical Association; 2020.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395 (10223):507-13.

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine; 2020.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224): 565-74.

Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology. 2000;81(4):853-79.

Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J. Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design. Nucleic Acids Research. 2003;31(24): 7117-30.

de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrobial agents and chemotherapy. 2014;58(8): 4875-84.

Nukoolkarn V, Lee VS, Malaisree M, Aruksakulwong O, Hannongbua S. Molecular dynamic simulations analysis of ritronavir and lopinavir as SARS-CoV 3CLpro inhibitors. Journal of theoretical biology. 2008;254(4):861-7.

Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YSE, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences. 2004;101(27):10012-7.

Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir and interferon beta against MERS-CoV. Nature Communications. 2020;11(1):1-14.

Boffito M, Arnaudo I, Raiteri R, Bonora S, Sinicco A, Di Garbo A, et al. Clinical use of lopinavir/ritonavir in a salvage therapy setting: pharmacokinetics and pharmaco-dynamics. Aids. 2002;16(15): 2081-3.

Kim UJ, Won E-J, Kee S-J, Jung S-I, Jang H-C. Case report Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antiviral therapy. 2016;21:455-9.

Bin SY, Heo JY, Song MS, Lee J, Kim EH, Park SJ, et al. Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea. Clinical Infectious Diseases. 2016;62(6):755-60.

Que T, Wong V, Yuen K. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med J. 2003;9(6):399-406.

Chu C, Cheng V, Hung I, Wong M, Chan K, Chan K, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3): 252-6.

Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opinion on Drug Discovery. 2019;14(4):397-412.

Shen L, Yang Y, Ye F, Liu G, Desforges M, Talbot PJ, Tan W. Safe and sensitive antiviral screening platform based on recombinant human coronavirus OC43 expressing the luciferase reporter gene. Antimicrobial Agents and Chemotherapy. 2016;60(9):5492-503.

Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. Jama. 2003;289(21):2801-9.

Hsu LY, Lee CC, Green JA, Ang B, Paton NI, Lee L, et al. Severe acute respiratory syndrome (SARS) in Singapore: clinical features of index patient and initial contacts. Emerging Infectious Diseases. 2003;9(6):713.

Ströher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, et al. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-α. Journal of Infectious Diseases. 2004;189(7):1164-7.

Falzarano D, De Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Scientific Reports. 2013;3:1686.

Falzarano D, De Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nature Medicine. 2013; 19(10):1313-7.

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Treatment of SARS with human interferons. The Lancet. 2003;362(9380): 293-4.

Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, Van Amerongen G, et al. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nature medicine. 2004;10(3):290-3.

Cheng Y, Wong R, Soo Y, Wong W, Lee C, Ng M, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases. 2005;24(1):44-6.

Soo Y, Cheng Y, Wong R, Hui D, Lee C, Tsang K, et al. Retrospective comparison of convalescent plasma with continuing high‐dose methylprednisolone treatment in SARS patients. Clinical Microbiology and Infection. 2004;10(7):676-8.

Zhang Jj, Dong X, Cao YY, Yuan Yd, Yang Yb, Yan Yq, et al. Clinical characteristics of 140 patients infected by SARS‐CoV‐2 in Wuhan, China. Allergy; 2020.

Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & Molecular Immunology. 2020;1-3.

Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus – A possible reference for coronavirus disease‐19 treatment option. Journal of medical virology; 2020.

Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine. 2017;9(396).

Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381-5.

Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. The Lancet Infectious Diseases. 2006;6(2):67-9.

Yan Y, Zou Z, Sun Y, Li X, Xu K-F, Wei Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Research. 2013;23(2):300-2.

Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal. 2005;2(1):69.

Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: An alternative drug for the treatment of coronavirus COVID-19? International Journal of Antimicrobial Agents. 2020;105944.

Chen C, Huang J, Cheng Z, Wu J, Chen S, Zhang Y, et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. medRxiv. 2020.

Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). med Rxiv; 2020.

Chen C, Qi F, Shi K, Li Y, Li J, Chen Y, et al. Thalidomide combined with low-dose glucocorticoid in the treatment of COVID-19 pneumonia; 2020.

Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv; 2020.

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med; 2020.

Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2.

Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal. 2012;443(3):851-6.

Wagstaff KM, Rawlinson SM, Hearps AC, Jans DA. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. Journal of biomolecular screening. 2011;16(2):192-200.

Frisk-Holmberg M, Bergqvist Y, Englund U. Chloroquine intoxication. British Journal of Clinical Pharmacology. 1983;15(4): 502.

World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected; 2020
Available:https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama; 2020.