Characterisation of Escherichia coli Recovered from Wild Animals Kept at Bikaner Zoo for Their Antibiotic Resistance

Main Article Content

Sophia Zaidi
Kritika Gahlot
Diwakar .
Femina Anjum
A. K. Kataria

Abstract

In the present study, a total of 41 E. coli isolates obtained from Boselaphus tragocamelus (5), Antelope cervicapra (18) and Gazella gazelle (18) maintained at Bikaner (Rajasthan) zoo were subjected to antibiogram determination against 15 antibiotics belonging to four different classes and were also genotyped for detecting presence of blaTEM, sul-2, strA and aadA genes. Antibiogram study revealed highest efficacy of ciprofloxacin (90.2%) followed by nalidixic acid (75.6%) and chloramphenicol (68.4%) and high resistance to β lactam, Sulfamethoxazole and Aminoglycoside antibiotics. The overall presence of blaTEM, sul-2, strA and aadA genes was detected in 95.12%, 80.48%, 60.97% and 87.8% in isolates.

Keywords:
Antibiogram, Escherichia coli, aadA, blaTEM, strA and sul-2.

Article Details

How to Cite
Zaidi, S., Gahlot, K., ., D., Anjum, F., & Kataria, A. K. (2020). Characterisation of Escherichia coli Recovered from Wild Animals Kept at Bikaner Zoo for Their Antibiotic Resistance. Journal of Pharmaceutical Research International, 32(3), 1-8. https://doi.org/10.9734/jpri/2020/v32i330408
Section
Original Research Article

References

Authier S, Paquette D, Labrecque O, Messier S. Comparison of susceptibility to antimicrobials of bacterial isolates from companion animals in a veterinary diagnostic laboratory in Canada between 2-time points 10 years apart. The Canadian Veterinary Journal. 2006;47(8): 774.

Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009a;157: 2893–2902.

Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci. 2009b;276:2521–2530.

Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010;8:251–259.

D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. Antibiotic resistance is ancient. Nature. 2011;477: 457–461.

Van den Bogaard AE, Stobberingh E. Epidemiology of resistance to antibiotics links between animals and humans. Intern. J. Antimicrob. Agents. 2000;14:327–335.

Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 2004;54:321–332.

Moyaert H, De Graef EM, Haesebrouck F, Decostere A. Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations. Res. Vet. Sci. 2006;81:1–7.

De Graef EM, Decostere A, Devriese LA, Haesebrouck F. Antibiotic resistance among fecal indicator bacteria from healthy individually owned and kennel dogs. Microb. Drug determinants in pig isolates from three herds with different histories of antimicrobial agent exposure. Appl. Environ. Microbiol. 2004;59:1467–147.

O'Brien TF. Emergence, spread, and environmental effect of antimicrobial resistance: How use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clinical Infectious Diseases. 2002; 34(Supplement_3):S78-S84.

Kummerer K, Henninger A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 2003;9: 1203–1214.

Sato G, Oka C, Asagi M, Ishiguro N. Detection of conjugative R plasmids conferring chloramphenicol resistance in Escherichia coli isolated from domestic and feral pigeons and crows. Zentralbl. Bakteriol. Orig. A. 1978;241:407–417.

Kanai H, Hashimoto H, Mitsuhashi S. Drug resistance and conjugative R-plasmid in Escherichia coli strains isolated from wild birds (Japanese tree sparrows, green pheasants and bamboo partridges). Jpn. Poult. Sci. 1981;18:234–239.

Tannock GW. Normal microflora. In: An Introduction to Microbes Inhabiting the Human Body, Chapman and Hall, London; 1995.

Sørum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Vet. Res. 2001;3(2):227–241.

Sa´enz Y, Zarazaga M, Brin˜as L, Lantero M, Ruiz-Larrea F, Torres C. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int. J. Antimicrob. Agents. 2001;18:353–358.

Rosas I, Salinas E, Martı´nez L, Calva E, Cravioto A, Eslava C, Ama´bile-Cuevas CF. Urban dust faecal pollution in Mexico City: Antibiotic resistance and virulence factors of Escherichia coli. Int. J. Hyg. Environ. Health. 2006;209:461–470.

Cowan ST, Steel KS. Manual for the identification of medical bacteria, 2nd Ed. Cambridge University Press, Cambridge; 1975.

Quinn PJ, Carter ME, Markey BK, Carter GR. General procedures in microbiology. Clinical Veterinary Microbiology. Wolfe Publishing, London. 19946;48.

Khaled A, Razik EI, Abdel Rahman, Youssef F, Alaa M, Hazem A. Direct identification of major pathogen of bubaline subclinical mastitis in Egypt using PCR. American Journal of Science. 2010;6(10): 652-660

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 1966;45(4): 493.

CLSI. Performance standards for antimicrobial susceptibility testing; Seventeenth Informational Supplement. Clinical and Laboratory Standards Institute M100-S17: 1. Wayne, Pennsyslvania. 2007;32-50.

Akond MA, Alam S, Hassan SMR, Shirin M. Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Internet Journal of Food Safety. 2009;11:19-23.

Skurnik DR, Ruimy A, Andremont C, Amorin P, Rouquet B, Picard, Denamur E. Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. J. Antimicrob. Chemother. 2006;57:1215–1219.

Najam M, Koppad M, Halesh L, Siddesh K. Detection of carbapenem resistance in extended spectrum beta lactamase producing Escherichia coli isolates in a tertiary care hospital. Indian J Microbiol Res. 2015;2(3):138-41.

Read SC, Gyles CL, Clarke RC, Lior H, McEwen S. Prevalence of verocytotoxigenic Escherichia coli in ground beef, pork and chicken in southwestern Ontario. Epidemiol. Infect. 1990;105:11–20.

Guo S, Wakeham D, Brouwers HJ, Cobbold RN, Abraham S, Mollinger JL, Trott DJ. Human-associated fluoroquinolone-resistant Escherichia coli clonal lineages, including ST354, isolated from canine faeces and extraintestinal infections in Australia. Microbes and Infection. 2015;17(4):266-274.

Lanz R, Kuhnert P, Boerlin P. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Veterinary Microbiology. 2003;91(1):73-84.

Chayani N, Tiwari S, Sarangi G, Mallick B, Mohapatra A, Paty BP, Das P. Role of azithromycin against clinical isolates of family Enterobacteriaceae: A comparison of its minimum inhibitory concentration by three different methods. Indian Journal of Medical Microbiology. 2009;27(2):107.

Pachori RR, Kulkarni NS. Antibiogram of pathogens associated with Pelvic inflammatory disease (PID).

Malakar M. Antimicrobial susceptibility patterns of Escherichia coli isolated from urine and stool samples of infected patients in Lakhimpur district of Assam, India; 2014.

Cid D, Blanco M, Blanco JE, Santa Quiteira JR, de la Fuente R, Blanco J. Serogroups, toxins and antibiotic resistance of Escherichia coli strains isolated from diarrhoeic goat kids in Spain. Veterinary Microbiology. 1996;53(3-4): 349-354.

Khan A, Das SC, Ramamurthy T, Sikander A. Antibiotic resistance, virulence gene, and molecular profile of shiga toxin-producing Escherichia coli isolates from diverse source in Calcutta, India. Journal of Clinical Microbiology. 2002;40(6):2009-2015.

Kozak GK, Boerlin P, Janecko N, Reid-Smith RJ, Jardine C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Applied and Environmental Microbiology. 2009; 75(3):559-566.

Boerlin PR, Travis CL, Gyles R, Reid-Smith N, Janecko H, Lim V, Nicholson SA, McEwen R, Friendship, Archambault M. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl. Environ. Microbiol. 2005;71:6753–6761.

Lee C, Langlois BE, Dawson KA. Detection of tetracycline resistance determinants in pig isolates from three herds with different histories of antimicrobial agent exposure. Appl. Environ. Microbiol. 1993;59(5):1467-1472.

Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, Harel J. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. Journal of Clinical Microbiology. 2004;42(12):5444-5452.

Stine OC, Johnson JA, Keefer-Norris A, Perry KL, Tigno J, Qaiyumi S, Stine MS, Morris JG Jr. Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. Int. J. Antimicrob. Agents. 2007;29:348– 352.

Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility and distribution. FEMS Microbiol. Rev. 1996;19:1–24.

Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005;245:195–203.

Andraševic AT, et al. Emerg. Infect. Dis. 2002;8:14-18.

Adelowo OO, Fagade OE, Agerso Y. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. The Journal of Infection in Developing Countries. 2014;8(09):1103-1112.

Collignon P, Powers JH, Chiller TM, Aidara-Kane A, Aarestrup FM. World health organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin Infect Dis. 2009;49:132-141.