Sonochemistry (Applications of Ultrasound in Chemical Synthesis and Reactions): A Review Part III

Main Article Content

Menshawy A. Mohamed

Abstract

As the need for friendly environment increasing the need for Sonochemistry increasing. Sonochemistry has become an important field of research for organic synthesis of diverse types of reactions, that decrease environmental hazardous and increase the yield of those reactions. The aim is to continue reviewing applications of ultrasound in chemical synthesis and reactions as reported in part I [1] and part II [2]. In this article I am trying to illustrate green sonochemical approaches for organic synthesis as one of the applications of ultrasound that minimize or eliminate the use and generation of hazardous substances and reduce environmental pollution.

Keywords:
Ultrasound, chalcones, heterocyclic compounds

Article Details

How to Cite
Mohamed, M. A. (2019). Sonochemistry (Applications of Ultrasound in Chemical Synthesis and Reactions): A Review Part III. Journal of Pharmaceutical Research International, 31(6), 1-19. https://doi.org/10.9734/jpri/2019/v31i630363
Section
Review Article

References

Menshawy A Mohamed. Sonochemistry (Applications of ultrasound in chemical synthesis and reactions): A review part I, Az J. Pharm. Sci.2016;53:117-134.

Menshawy A Mohamed. Sonochemistry (Applications of ultrasound in chemical synthesis and reactions): A review part II, Advaces in Bioresearch. 2017;8(4).

Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: Biophysical effects, Phys. Ther. 2001;81: 1351–1358.

Cobbold RS. Foundations of Biomedical Ultrasound, Oxford University Press, Demand; 2007.

Cartee RE, Selcer BA, Hudson JA, Finn-Bodner ST, Mahaffey MB, Johnson PL, Marich K. Practical veterinary ultrasound, Williams & Wilkins; 1996.

Richard James Wood, Judy Lee, Madeleine J Bussemaker. A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions. Ultrasonics Sonochemistry. 2017;38:351–370.

Jyoti Mathela, Singh BK. A Review On Green Approach in Chemistry World Journal of Pharmaceutical Research. 2016;5(10):309-320.

Martı´n-Aranda RM. Ultrasound-promoted N-alkylation of imidazole. Catalysis by solid-base, alkali-metal doped carbons. Green Chem. 2004;4:628–630.

Carlos Javier Dura`n-Valle CJ, Fonseca IM, Calvino-Casilda V, Picallo M, Lo´ pez-Peinado AJ, Martı´n-Aranda RM. Sonocatalysis and alkaline-doped carbons: An efficient method for the synthesis of chalcones in heterogeneous media. Catal. Today. 2005;107–108:500–506.

Lo´ pez-Pestan˜a JM, A vila-Rey MJ, Martı´n-Aranda RM. Ultrasound-promoted N-alkylation of imidazole. Catalysis by solid-base, alkali-metal doped carbons. Green Chem. 2004;4:628–630.

Niralwad KS, Shingate BB, Shingare MS. Solvent-free sonochemical preparation of α-aminophosphonates catalyzed by 1-hexanesulphonic acid sodium salt. Ultrason. Sonochem. 2010;17:760–763.

Pillai UR, Sahle-Demessie E, Varma RS. Ultrasound-assisted epoxidation of olefins and α,β-unsaturated ketones over hydrotalcites using hydrogen peroxide. Synth. Commun. 2003;33(12):2017–2027.

Karla P, Guzen KP, Alexandre S, Guarezemini AS, Orfao ATG, Cella R, Pereira CMP, Stefani HA. Eco-friendly synthesis of imines by ultrasound irradiation. Tetrahedron Lett. 2007;48: 1845–1848.

Dadhania AN, Patel VK, Raval DK. Catalyst-free sonochemical synthesis of 1,8-dioxo-octahydroxanthene derivatives in carboxy functionalized ionic liquid. CR. Chimie. 2012;15:378–383.

Deligeorgiev T, Vasilev A, Vaquero JJ, Alvarez-Builla J. A green synthesis of isatoic anhydrides from isatins with urea-hydrogen peroxide complex and ultrasound. Ultrason Sonochem. 2007; 14:497–501.

Gonza`lez-Paz RJ, Lluch C, Lligadas G, Ronda JC, Galia M, Cadiz V. A green approach toward oleic-and undecylenic acid-derived polyurethanes. J. Polym. Sci. A Polym. Chem. 2011;49:2407–2416.

Santos RG, Xavier NM, Bordado JC, Rauter AP. Efficient and first regio-and stereoselective direct C-glycosylation of a flavanone catalysed by Pr(OTf)3 under conven¬tional heating or ultrasound irradiation. Eur. J. Org. Chem. 2013;1441–1447.

Kowsari E, Mallakmohammadi M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason. Sonochem. 2011;18:447– 454.

Sant’ Anna Gda S, Machado P, Sauzem PD, Rosa FA, Rubin MA, Ferreira J, Bonacorso HG, Zanatta N, Martins MA. Ultrasound promoted synthesis of 2-imidazolines in water: A greener approach toward monoamine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2009;19:546–549.

Zou Y, Wu H, Hu Y, Liu H, Zhao X, Ji H, Shi D. A novel and environment friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem. 2011;18: 708–712.

Rostamizadeh S, Amani AM, Mahdavinia GH, Amiri G, Sepehrian A. Ultrasound promoted rapid and green synthesis of 1,8-dioxo- octahydroxanthenes derivatives using nanosized MCM-41-SO3H as a nanoreactor, nanocatalyst in aqueous media. Ultrason. Sonochem. 2010;17:306–309.

Mahdavinia GH, Rostamizadeh S, Amani AM, Emdadi Z. Ultrasound-promoted greener synthesis of catalyzed by NH4H2PO4/SiO2 in water. Ultrason. Sonochem. 2009;16:7–10.

Almeida QAR, Faria RB. Synthesis of highly substituted pyrroles using ultrasound in aqueous media. Green Chem. Lett. Rev. 2013;6(2):129–133.

Puri S, Kaur B, Parmar A, Kumar H. Ultrasound-promoted greener synthesis of 2H-chromen-2-ones catalyzed by copper perchlorate in solventless media. Ultrason. Sonochem. 2009;16:705–707.

Khaligh NG, Shirini F. Introduction of poly(4-vinylpyridinium) perchlorate as a new, efficient and versatile solid acid catalyst for one-pot synthesis of substituted coumarins under ultrasonic irradiation. Ultrason. Sonochem. 2013;20: 26–31.

Dandia A, Bhati DS, Jain AK, Sharma GN. Ultrasound promoted clay catalyzed efficient and one pot synthesis of substituted oxindoles. Ultrason. Sonochem. 2011;18:1143–1147.

Gupta R, Sharma D, Singh S. Eco-friendly synthesis and insecticidal activity of some fluorinated 2-(N-arylamino)-4-arylthiazoles. Phosphorus Sulfur Silicon. 2010;185: 1321–1331.

Guzen KP, Cella R, Stefani HA. Ultrasound enhanced synthesis of 1,5-benzodiazepinic heterocyclic rings. Tetrahedron Lett. 2006;47:8133–8136.

Sadjadi S, Sadjadi S, Hekmatshoar R. Ultrasound-promoted greener synthesis of benzoheterocycle derivatives catalyzed by nanocrystalline copper(II) oxide. Ultrason. Sonochem. 2010;17:764–767.

Venzke D, Flores AFC, Quina FH, Pizzuti L, Pereira CMP. Ultrasound pro¬moted greener synthesis of 2-(3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenylthiazoles. Ultrason. Sonochem. 2011;18:370– 374.

Pizzuti L, Martins PLG, Ribeiro BA, Quina FH, Pinto E, Flores AFC, Venzke D, Pereira CMP. Efficient sonochemical synthesis of novel 3,5-diaryl-4,5-dihydro-1H-pyrazole-1-carboximidamides. Ultrason. Sonochem. 2010;17:34–37.

Chermahini AN, Teimouri A, Momenbeik F, Zarei A, Dalirnasab Z, Ghaedi A, Roosta M. Clay-catalyzed synthesis of 5-substituent 1-H-tetrazoles. J. Heterocycl. Chem. 2010;47:913–922.

Dandia A, Singh R, Bhaskaran S. Ultrasound promoted greener synthesis of spiro [indole-3,50-[1,3]oxathiolanes] in water. Ultrason. Sonochem. 2010;17:399–402.

Li JT, Sun MX, He GY, Xu XY. Efficient and green synthesis of bis(indolyl)meth-anes catalyzed by ABS inaqueous media under ultrasound irradiation. Ultrason. Sonochem. 2011;18:412–414.

Joshi RS, Mandhane PG, Diwakar SD, Gill CH. Ultrasound assisted green synthe¬sis of bis(indol-3-yl)methanes catalyzed by 1-hexenesulphonic acid sodium salt. Ultrason. Sonochem. 2010;17:298–300.

Bazgir A, Ahadi S, Ghahremanzadeh R, Khavasi HR, Mirzaei P. Ultrasound-assisted one-pot, three-component synthesis of spiro[indoline-3,4-pyrazolo[3,4-b] pyridine]-2,6 (10H)-diones in water. Ultrason. Sonochem. 2010; 17:447–452.

Ruiz E, Rodriguez H, Coro J, Niebla V, Rodriguez A, Martinez-Alvarez R, Novoa de Armas H, Suarez M, Martin N. Efficient sonochemical synthesis of alkyl 4-aryl¬6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylate derivatives. Ultrason. Sonochem. 2012;19:221– 226.

Joshi RS, Mandhane PG, Badadhe PV, Gill CH. Development of practical meth-odologies for the synthesis of novel 3(4-oxo-4H-chromen-3-yl)acrylic acid hydrazides. Ultrason. Sonochem. 2011;18: 735–738.

Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G. Alkyne-azide click reaction catalyzed by metallic copper under ultrasound. Nat. Protocol. 2010;5(3):607–611.

Cintas P, Palmisano G, Cravotto G. Power ultrasound in metal-assisted synthesis: from classical barbier-like reactions to click chemistry. Ultrason. Sonochem. 2011;18: 836–841.

Datta B, Pasha MA. Glycine catalyzed convenient synthesis of 2-amino-4H-chromenes in aqueous medium under sonic condition. Ultrason. Sonochem. 2012;19:725–728.

Banitaba SH, Safari J, Khalili SD. Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis. Ultrason. Sonochem. 2013;20:401–407.

Kamble S, Kumbhar A, Rashinkar G, Barge M, Salunkhe R. Ultrasound promoted efficient and green synthesis of β-amino carbonyl compounds in aqueous hydrotropic medium. Ultrason. Sonochem. 2012;19:812–815.

Ablajan K, Kamil W, Tuoheti A, Wan-Fu S. An efficient three component one-pot synthesis of 5-amino-7-aryl-7,8-dihydro-[1,2,4] triazolo [4,3-a]-pyrimidine-6-carbonitriles. Molecules. 2012;17:1860–1869.

Zeng H, Li H, Shao H. One-pot three-component Mannich-type reactions using sulfamic acid catalyst under ultrasound irradiation. Ultrason. Sonochem. 2009;16: 758–762.