Phytochemical Screening and Toxicological Study of Neptunia oleracea Lour. (Mimosaceae) Extracts, Plant Used in Traditional Medicine

Main Article Content

Geoffroy G. Ouedraogo
Gaétan D. Somda
Sylvain Ilboudo
Noufou Ouedraogo
Jean Koudou
Pierre I. Guissou

Abstract

Neptunia oleracea (Lourd.) Mimosaceae is a plant commonly used in traditional medicine for the treatment of several pathologies such as dysentery, jaundice, leucorrhoea, troubles of earache, among others.

Aim: The purpose of this study was to carry out preliminary phytochemical screening, acute toxicity studies and to evaluate the effect of the aqueous and hydro-ethanolic extracts of N. oleracea on intestinal motility in vivo.

Methodology: Preliminary qualitative phytochemical screening was conducted using standard procedures while acute toxicity studies was performed using OECD method. The effect of N. oleracea extracts on intestinal motility was evaluated using on normal and acetylcholine-induced transits.

Results: Preliminary qualitative phytochemical screening of aqueous and hydro-ethanolic extracts of N. oleracea revealed the presence of similar constituents including steroids, triterpenoids, saponins, tannins, flavonoids, anthocyanidins, coumarins and carbohydrates. Alkaloids was absent in both the extracts. The oral median lethal dose (LD50) for both extracts was estimated to be 5000 mg/kg.

The effect of extracts on intestinal peristalsis in mice showed that the aqueous and hydro-ethanolic extracts of N. oleracea stimulate normal intestinal transit by 1.29 and 8.54% respectively at the dose of 50 mg/kg body weight, thus there was inhibition at higher doses. These extracts potentiate acetylcholine-induced intestinal transit by 23.9 and 14.39% respectively at 500 mg/kg body weight.

Conclusion: The findings of this study showed that the aqueous and hydro-ethanolic extracts of Neptunia oleracea contain bioactive constituents that have practically no toxic effect. This could justify the many forms of use of this plant in traditional medicine.

Keywords:
Neptunia oleracea, acute toxicity, NMRI mice, intestinal transit, Burkina Faso

Article Details

How to Cite
Ouedraogo, G. G., Somda, G. D., Ilboudo, S., Ouedraogo, N., Koudou, J., & Guissou, P. I. (2019). Phytochemical Screening and Toxicological Study of Neptunia oleracea Lour. (Mimosaceae) Extracts, Plant Used in Traditional Medicine. Journal of Pharmaceutical Research International, 31(6), 1-8. https://doi.org/10.9734/jpri/2019/v31i630362
Section
Original Research Article

References

Tabuti JRS, Lye KA, Dhillion SS. Traditional herbal drugs of Bulamogi, Uganda: Plants, use and administration. J Ethnopharmacol. 2003;88:19–44.

OMS B régional de L. Traditional medicine in Cambodia part one; 2011.

Zerbo P, Millogo-Rasolodimby J, Nacoulma-Ouedraogo OG, Van Damme P. Plantes médicinales et pratiques médicales au Burkina Faso: Cas des Sanan. Bois Forets des Trop. 2011;65:41–53.

Heang Al. P, et al. Traditional medicine in Cambodia part one; 2013.

Bhoomannavar VS, Patil VP, Hugar S, Nanjappaiah HM, Kalyane N. Anti-ulcer activity of Neptunia oleracea Lour. Pharmacologyonline. 2011;3:1015–20.

Lee SY, Mediani A, Ismail IS, Maulidiani, Abas F. Antioxidants and α-glucosidase inhibitors from Neptunia oleracea fractions using 1 H NMR-based metabolomics approach and UHPLC-MS/MS analysis 03 Chemical Sciences 0301 Analytical Chemistry. BMC Complement Altern Med. 2019;19:1–15.

Bhoomannavar VS, Shivakumar SI, Hallikeri CS, Hatapakki BC. Hepatoprotective activity of leaves of Neptunia oleracea lour in carbon tetrachloride induced rats. Res J Pharm Biol Chem Sci. 2011;2:309–14.

Nakamura Y, Murakami A, Koshimizu K, Ohigashi H. Identification of pheophorbide a and its related compounds as possible anti-tumor promoters in the leaves of Neptunia oleracea. Biosci Biotechnol Biochem. 1996;60:1028–30.

Kande B, Yao K, Allah-Kouadio E, Kone MW. Enquête sur l’utilisation et l’effet des médicaments à base de plantes chez les patients hépatiques hospitalisés au Service de médecine et d’hépatogastroentérologie du Centre Hospitalier Universitaire (CHU) de Cocody en Côte d’Ivoire. J Appl Biosci. 2018;130: 13220.

Døssing M, Sonne J. Drug-Induced hepatic disorders: Incidence, management and avoidance. Drug Saf. 1993;9: 441–9.

Thompson M, Jaiswal Y, Wang I, Williams L. Hepatotoxicity: Treatment, causes and applications of medicinal plants as therapeutic agents. J Phytopharm. 2017;6: 186–93.

Zeggwagh AA, Lahlou Y, Bousliman Y. Enquete sur les aspects toxicologiques de la phytotherapie utilisee par un herboriste à Fes, Maroc. Pan Afr Med J. 2013;14.
DOI: 10.11604/pamj.2013.14.125.1746

Lengani A, Lompo LF, Guissou IP, Nikiema JB. Médecine traditionnelle et maladies des reins au Burkina Faso. Nephrol Ther. 2010;6:35–9.

Subha1 D, Geetha N. Evaluation of acute toxicity of the methanolic extract of Tanacetum parthenium L. in albino wistar rats. J Sci Innov Res. 2017;6: 113–5.
Available: www.jsirjournal.com
(Accessed 10 Aug 2019)

Ciulei. Practical manuals on the industrial utilization of medicinal and aromatic plants. Methodology for Analysis of Vegetable Drugs. 1st Edn. Bucarest; 1982.

OECD. OECD/OCDE 423 OECD guideline for testing of chemicals acute oral toxicity-acute toxic class method; 2001.
Available:https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl423.pdf. (Accessed 10 Aug 2019)

Archange M, Tagne F, Kamgang R, Noubissi PA, Oyono J-LE. Activity of Oxalis barrelieri aqueous extract on rat secretory diarrhea and intestine transit article info abstract. J Appl Pharm Sci. 2015;5:58–062.
DOI: 10.7324/JAPS.2015.50111

Schäfer H, Wink M. Medicinally important secondary metabolites in recombinant microorganisms or plants: Progress in alkaloid biosynthesis. Biotechnol J. 2009;4: 1684–703.

Imane Z, Jihane I, Amal A, Souad S, Yassir B. Evaluation of the therapeutic and toxicological knowledge of herbalists on the most notified plants in the poison control and pharmacovigilance center of Morocco. J Pharmacogn Phyther. 2018;10: 126–32.

Mole S, Butler LG, Iason G. Defense against dietary tannin in herbivores: A survey for proline rich salivary proteins in mammals. Biochem Syst Ecol. 1990;18: 287–93.
DOI:10.1016/0305-1978(90)90073-O

Nafuka SN, Mumbengegwi DR. Phytochemical analysis and in vitro anti-plasmodial activity of selected ethnomedicinal plants used to treat malaria associated symptoms in Northern Namibia; 2013.

Soulama S, Sanon H, Meda R, Boussim J. Teneurs en tanins de 15 ligneux fourragers du Burkina Faso. Afrique Sci Rev Int des Sci Technol. 2014;10:180–90.
Available:https://www.ajol.info/index.php/afsci/article/view/118347. Accessed 10 Aug 2019.

United Nations. Globally Harmonized System of classification and labelling of chemicals (GHS). ST/SG/AC.1; 2017.
Available:https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev07/English/ST_SG_AC10_30_Rev7e.pdf. (Accessed 10 Aug 2019)

Roberts RR, Murphy JF, Young HM, Bornstein JC. Development of colonic motility in the neonatal mouse-studies using spatiotemporal maps. Am J Physiol - Gastrointest Liver Physiol. 2007;292:5–7.

Briet J, Javelot H, Vailleau JL. Échelle d’imprégnation anticholinergique: Mise au point D’Une nouvelle échelle incluant les molécules françaises, Et Application En Psychiatrie. Eur Psychiatry. 2015;30: S154–5.

Zimmerman TW, Dobbins JW, Binder HJ. Mechanism of cholinergic regulation of electrolyte transport in rat colon in vitro. Am J Physiol - Gastrointest Liver Physiol; 1982;5.

Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–94.

Holzer P. Opioid receptors in the gastrointestinal tract. Regulatory Peptides. 2009;155:11–7.

Wilcock SCA, Twycross R, Regnard C, Twycross R, Mihalyo M. Therapeutic Reviews. 2011;42:319–23.

Mamyrbekova-bekro JA, Boua BB, Bekro Y. Screening phytochimique bio guidé et évaluation in vitro des propriétés purgatives de Anchomanes difformis (Blume) Engl., une plante utilisée en Côte d ’ Ivoire Dans le Traitement Folklorique de la Constipation. 2013;20–6.