Ovicidal and Larvicidal Activities of Saba senegalensis (A.DC) Pichon (Apocynaceae) Extracts and Fractions on Heligmosomoides bakeri (Nematoda, Heligmosomatidae)

Main Article Content

Mohamed Bonewendé Belemlilga
Aristide Traoré
Lazare Belemnaba
Félix Bondo Kini
Sylvin Ouédraogo
Innocent Pierre Guissou

Abstract

Aims: To investigate ovicidal and larvicidal activities of an aqueous decoction (AD) and hydroethanolic macerate (HEM) extracts and fractions of the leaves of Saba senegalensis.

Study Design: In vitro, the ovicidal and larvicidal activities of AD and HEM extracts and fractions of the leaves of Saba senegalensis on the eggs and larvae (L1) of Heligmosomoides bakeri.

Place and Duration of Study: The experiment was conducted at the department of Medicine and Traditional Pharmacopeia-Pharmacy (MEPHATRA-PH) of Institute of Research in Health Sciences (IRSS) between June 2015 and December 2016.

Methodology: The phytochemical groups of the extract and fractions of Saba senegalensis were determined by a colorimetric and Thin Layer Chromatography methods. The eggs were obtained from feces of mice deliberately infected and the larvae from the eggs were incubated at 25 ±2℃ for 72 hours. Eggs and larvae were exposed to increasing concentrations (100; 625; 1250; 2500; 3750 µg/mL) of the different extracts, 48 hours and 24 hours for the eggs and larvae respectively. Distilled water and DMSO 0.1% were used as negative controls while albendazole and levamisole were used as positive controls.

Results: The phytochemical groups of interest are the tannins, saponins, flavonoids and triterpenes. The negative control had given 2.16% of egg hatch inhibition and 0% of larvae mortality mean while the positive control had given 100% in both cases. The extracts inhibited eggs hatching and affected larval survival. Pharmacological effects were concentration-dependent. The ovicidal and larvicidal activity of HEM is more interesting than that of AD with an Emax = 95.60% and an IC50 = 390 µg/mL. It is the same for the larvicidal activity with Emax = 100% and an LC50 = 900 µg/mL.  However, the differences were not statistically significant.

Conclusion: These results show the ovicidal and larvicidal properties of the S. senegalensis leaves.

Keywords:
Saba senegalensis, Anthelmintic, Heligmosomoides bakeri, in vitro, Burkina Faso.

Article Details

How to Cite
Bonewendé Belemlilga, M., Traoré, A., Belemnaba, L., Bondo Kini, F., Ouédraogo, S., & Pierre Guissou, I. (2019). Ovicidal and Larvicidal Activities of Saba senegalensis (A.DC) Pichon (Apocynaceae) Extracts and Fractions on Heligmosomoides bakeri (Nematoda, Heligmosomatidae). Journal of Pharmaceutical Research International, 31(6), 1-13. https://doi.org/10.9734/jpri/2019/v31i630327
Section
Original Research Article

References

World Health Organization (WHO). Investing to overcome the global impact of neglected tropical diseases. Who Report on Neglected Tropical Diseases. 2015. 3:191.
Available:http://apps.who.int/iris/bitstream/10665/152781/1/9789241564861_eng.pdf

World Health Organization (WHO). Working to overcome the global impact of neglected tropical diseases First WHO report on neglected tropical diseases. World Health Organisation. 2010; 86(13):186.
Available:http://whqlibdoc.who.int/publications/2010/9789241564090_eng.pdf

Bizimenyera ES, Githiori JB, Eloff JN, Swan GE. In vitro activity of Peltophorum africanum Sond. (Fabaceae) extracts on the egg hatching and larval development of the parasitic nematode Trichostrongylus colubriformis. Vet Parasitol. 2006;142(3–4):336–343.

Chandra S, Prasad A, Sankar M, Yadav N, Dalal S. Molecular diagnosis of benzimidazole resistance in Haemonchus contortus in sheep from different geographic regions of North India. Vet World. 2014;7(5):337–41.

Vision et stratégie pour les dix ans à venir. TDR/GEN/06.5/FR/Rev.2. 2007;
Available:http://www.who.int/tdr/documents/TDR-10-year-vision-fre.pdf

OMS, (Organisation Mondiale de la Santé). Médecine traditionnelle: Rapport du secrétariat ; 2002.

Luoga W, Mansur F, Lowe A, Duce IR, Buttle DJ, Behnke JM. Factors affecting the anthelmintic efficacy of papaya latex in vivo: host sex and intensity of infection. Parasitol Res. 2015;114(7):2535–41.

Udobi MI, Nzeakor TA, Eke IG, Ezeh IO, Onyeabor A, Idika IK et al. Evaluation of the anthelminthic potential of Duranta erecta L. (Verbenaceae) fruits used in Nigerian ethnomedicine as a vermifuge. Journal of Ethnopharmacology. 2018; 216:57-62.

Oliveira AF, Costa Junior LM, Lima AS, Silva CR, Ribeiro MNS, Mesquista JWC, et al. Anthelmintic activity of plant extracts from Brazilian savanna. Veterinary Parasitology. 2017;236:121-127.

Kumarasingha R, Preston S, Yeo T-C, Lim DSL, Tu C-L, Palombo EA, et al. Anthelmintic activity of selected ethno-medicinal plant extracts on parasitic stages of Haemonchus contortus. Parasites & Vectors. 2016;9:187.

Zabré G, Kaboré A, Bayala B, Katiki LM, Costa-Júnior LM, Tamboura HH, et al. Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana. Parasite. 2017;24-44.

Traoré A, Ouédraogo S, Belemlilga BM, Kaboré A and Guissou IP. Phytochemical analysis and ovicidal activity of Cassia sieberiana, Guiera senegalensis and Excoecaria grahamii extracts. African J Pharm Pharmacol. 2017;11(44):554-560.

Traore A, Ouedraogo S, Lompo M, Traore S, Some N. Ethnobotanical survey of medicinal plants used to treat gastrointestinal parasites in human and livestock in four geographic areas of Burkina Faso (West Africa). Arch. Appl. Sci. Res. 2013;5(6):172-177.

Belemlilga MB, Traoré A, Ouédraogo S, Kaboré A, Tamboura HH, Guissou IP. Anthelmintic activity of Saba senegalensis (A.DC.) Pichon (Apocynaceae) extract against adult worms and eggs of Haemonchus contortus. Asian Pac J Trop Biomed. 2016;6(11):945–949.

Ciulei I. Pratical manuals on the industrial utilization of chemical and aromatic plants. Methodology for analysis of vegetable drugs. Ed. Ministry of chemical industry, Bucharest. 1982;67.

Amélie Lhuillier. Contribution à l’étude phytochimique de quatre plantes malgaches : Agauria salicifolia Hook. f ex Oliver, Agauria polyphylla Baker (Ericaceae), Tambourissa trichophylla Baker (Monimiaceae) et Embelia concinna Baker (Myrsinaceae). Thèse de Faculté des Sciences Pharmaceutiques – Université Paul Sabatier – Toulouse III. 2007;214.

Ngangout AM, Wabo PJ, Payne VK, Komtangi MC, Yondo J, Tayo G, et al. Ovicidal and larvicidal activities of aqueous and ethanolic extract of stem bark of Annona senegalensis (Annonaceae) on Heligmosomoides bakeri (Nematoda, Heligmosomatidae). Asian Pacific Journal of Tropical Biomedicine. 2012;1-5.

Wabo PJ, Payne VK, Mbogning TG, Komtangi MC, Yondo J, Ngangout AM, et al. In vitro anthelminthic efficacy of Dichrocephala integrifolia (Asteraceae) extracts on the gastro-intestinal nematode parasite of mice: Heligmosomoides bakeri (Nematoda, Heligmosomatidae). Asian Pac J Trop Biomed. 2013;3(2):100–104.

Eguale T, Tadesse D, Giday M. In vitro anthelmintic activity of crude extracts of five medicinal plants against egg-hatching and larval development of Haemonchus contortus. J Ethnopharmacol. 2011; 137(1):108–113.

Nacoulma OG. Plantes médicinales et Pratiques médicinales Traditionnelles: cas du plateau central. Thèse de Doctorat. d’Etat ès Sciences Naturelles, Université de Ouagadougou. 1996;328.

Bruneton J. Pharmacognosie– phytochimie plantes medicinales, 3ème édition. Paris : Techniques et documentations LAVOISIER. 1999;915.

Engström MT, Karonen M, Ahern JR, Baert N, Payré B, Hoste H, et al. Chemical structures of plant hydrolyzable tannins reveal their in vitro activity against egg hatching and motility of Haemonchus contortus nematodes. J Agric Food Chem. 2016;64(4):840–851.

Hoste H, Martinez-Ortiz-De-Montellano C, Manolaraki F, Brunet S, Ojeda-Robertos N, Fourquaux I, et al. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol. 2012;186(1–2):18–27.

Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, and Hoskin SO. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology. 2006;22(6):253–261.

Alhag AM, Abdelrahim BN, and Verla NI. Wattle tannins as control strategy for gastrointestinal nematodes in sheep. African Journal of Agricultural Research. 2014;9(28):2185–2189.

Ahmad N, Fazal H, Ayaz M, Abbasi BH, Mohammad I, Fazal L. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac J Trop Biomed. 2011; 1(4):330–333.

Athanasiadou S, Kyriazakis I, Jackson F, Coop RL. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: In vitro and in vivo studies. Vet Parasitol. 2001;99(3):205–219.

Hernández-Villegas MM, Borges-Argáez R, Rodriguez-Vivas RI, Torres-Acosta JFJ, Méndez-Gonzalez M, Cáceres-Farfan M. Ovicidal and larvicidal activity of the crude extracts from Phytolacca icosandra against Haemonchus contortus. Vet Parasitol. 2011;179(1–3):100–106.

Azando EVB, Hounzangbé-Adoté MS, Olounladé PA, Brunet S, Fabre N, Valentin A, et al. Involvement of tannins and flavonoids in the in vitro effects of Newbouldia laevis and Zanthoxylum zanthoxyloïdes extracts on the exsheathment of third-stage infective larvae of gastrointestinal nematodes. Vet Parasitol. 2011;180(3–4):292–297.

Williams AR, Ropiak HM, Fryganas C, Desrues O, Mueller-Harvey I, Thamsborg SM. Assessment of the anthelmintic activity of medicinal plant extracts and purified condensed tannins against free-living and parasitic stages of Oesophagostomum dentatum. Parasites and Vectors. 2014;7(1):1–12:518- 530.

D’Almeida RE, Alberto MR, Morgan P, Sedensky M, Isla MI. Effect of structurally related flavonoids from Zuccagnia punctata Cav. on Caenorhabditis elegans. Acta Parasitol. 2015;60(1):164–172.

Vezza T, Rodríguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J. Flavonoids in inflammatory bowel disease: A review. Nutrients. 2016; 8(4).

Yougbaré-Ziébrou MN, Ouédraogo N, Lompo M, Bationo H, Yaro B, Gnoula C, et al. Activités anti-inflammatoire, analgésique et antioxydante de l’extrait aqueux des tiges feuillées de Saba senegalensis Pichon (Apocynaceae). Phytotherapie. 2016;14(4):213–219.