QSAR and Docking Study of Isatin Analogues as Cytotoxic Agents

Main Article Content

Razieh Sabet
Soghra Khabnadideh
Dara Fathi
Leila Emami

Abstract

Computational chemistry is a unique method in the drug discovery process?? Explain Why?. In this study 109 molecules containing the isatin backbone were subjected to quantitative structure-activity relationship analysis to find the structure requirements for ligand binding. The structures were sketched and optimized in Hyperchem. The structural invariants used in this study were those obtained from whole molecular structures: by both hyperchem and dragon software (16 types of descriptors). Four chemometrics methods including MLR, FA-MLR, PCR and GA-PLS were employed to make connections between structural parameters and anticancer effects. MLR models revealed the effects of constitutional, functional, geometrical, WHIM and GETAWAY descriptors having higher impact on anticancer activity of the compounds. GA-PLS showed functional, constitutional and chemical descriptor indices to be the most significant parameters on anticancer activity. Moreover, the result of FA-MLR analysis revealed the effects of functional descriptors on the anticancer activity. A comparison between the different statistical methods employed and the results indicated that GA-PLS represented superior results and could explain and predict 81% and 78% variances in the PIC50 data, respectively. Docking studies of these compounds were also investigated and promising results were obtained showing that some compounds were introduced as a good candidate for cancer agents.

Keywords:
QSAR, docking, isatin, cytotoxic

Article Details

How to Cite
Sabet, R., Khabnadideh, S., Fathi, D., & Emami, L. (2019). QSAR and Docking Study of Isatin Analogues as Cytotoxic Agents. Journal of Pharmaceutical Research International, 27(5), 1-22. https://doi.org/10.9734/jpri/2019/v27i530184
Section
Original Research Article

References

Pandeya SN, Smitha S, Jyoti M, Sridhar SK. Biological activities of isatin and its derivatives. Acta Pharm. 2005;55:27–46.

Sharma VM, Prasanna P, Seshu VA, Renuka B, Rao VL, Kumar GS, Narasimhulu CP, Babu PA, Puranik RC, Subramanyam D, Venkateswarlu A, Rajagopal S, Kumar KBS, Rao CS, Mamidi NVSR, Deevi DS, Ajaykumar R, Rajagopalan R. Bioorg. Med. Chem. Lett. 2002;12:2303–2307.

Moon MJ, Lee SK, Lee JW, Song WK, Kim SW, Kim JI, Cho C, Choi SJ, Kim YC. Bioorg. Med. Chem. 2006;14:237–246.

Abadi AH, Abou-Seri SM, Abdel-Rahman DE, Klein C, Lozach O, Meijer L. Eur. J. Med. Chem. 2006;41:296–305.

Gursoy A, Karali N. Eur. J. Med. Chem. 2003;38:633–643.

Schmidi H. Multivariate prediction for QSAR. Chemom. Intell. Lab. Syst. 1997; 37:125-134.

Hansch C, Kurup A, Garg R, Gao H. Chem-bioinformatics and QSAR: A review of QSAR lacking positive hydrophobic terms. Chem. Rev. 2001;101:619-672.

Wold S, Trygg J, Berglund A, Antii H. Some recent developments in PLS modeling. Chemom. Intell. Lab. Syst. 2001; 58:131-150.

Sabet R, Fassihi A, Hemmateenejad B, Saghaie L, Miri R, Gholami L. Computer-aided drug design of novel antibacterial 3-hydroxypyridine-4-ones: Application of QSAR methods based on the MOLMAP approch. J Comput Aid Mol Des. 2012;26: 349-361.

Sabet R, Fassihi A, Moeinifard B. QSAR study of PETT derivatives as potent HIV-reverse transcriptase inhibitors. J. Mol. Graph & Model. 2009;28:146-155.

Hansch C, Fujita T. ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 1964;86:1616-1626.

Wang J, Zhang L, Yang G, Zhan CG. Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: A study of quantum chemical descriptors from density functional theory. J. Chem. Inf. Comput. Sci. 2004;44:2099-2105.

Hansch C, Hoekman D, Gao H. Comparative QSAR: Toward a deeper understanding of chemicobiological interactions. Chem. Rev. 1996;96:1045-1075.

Todeschini R, Consonni V. Handbook of molecular descriptors. Wiley-VCH, Weinheim; 2000.

Horvath D, Mao B. Neighborhood behavior. Fuzzy molecular descriptors and their influence on the relationship between structural similarity and property similarity. QSAR Comb. Sci. 2003;22:498-509.

Putta S, Eksterowicz J, Lemmen C, Stanton R. A novel subshape molecular descriptor. J. Chem. Inf. Comput. Sci. 2003;43:1623-1635.

Gupta S, Singh M, Madan AK. Superpendentic index: A novel topological descriptor for predicting biological activity. J. Chem. Inf. Comput. Sci. 1999;39:272-277.

Consonni V, Todeschini R, Pavan M. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J. Chem. Inf. Comput. Sci. 2002; 42:693-705.

HyperChem, Release 8.0 for Windows, Molecular Modeling System: HyperCube.

Todeschini R. Milano Chemometrics and QSAR Group.
Available:http://michem.disat.unimib.it/

Fassihi A, Sabet R. QSAR study of p56lck protein tyrosine kinase inhibitory activity of flavonoid derivatives using MLR and GA-PLS. Int. J. Mol. Sci. 2008;9:1876-1892.

Sabet R, Fassihi A. QSAR Study of Antimicrobial 3-Hydroxypyridin-4-one

and 3-Hydroxypyran-4-one derivatives using different chemometric tools. Int. J. Mol. Sci. 2008;9:2407-2423.

Fassihi A, Abedi D, Saghaie L, Sabet R, Fazeli H, Bostaki Gh, Deilami O, Sadinpour H. Synthesis, antimicrobial evaluation and QSAR study of some 3-hydroxypyridine-4- one and 3-hydroxypyran-4-one derivatives. Eur. J. Med. Chem. 2009;44:2145-2157.

Consonni V, Todeschini R, Pavan M. J. Chem. Inf. Comput. Sci. 2002;42:693-705.

Vine KL, Locke JM, Ranson M, Benkendorff K, Pyne SG, Bremner JB. Bioorg. Med. Chem. 2007;15:931–938.

Vine KL, Locke JM, Ranson M, Pyne SG, Bremner JB. Bioorg. Med. Chem. 2007;15: 931.

Vine KL, Locke JM, Ranson M, Pyne SG, Bremner JB. J. Med. Chem. 2007;50: 5109–5117.

Kumar K, Sagar S, Esau L, Kaur M, Kumar V. Eur. J. Med. Chem. 2012;58:153.

Roskoko Jr. R. Biochem. Biophys. Res. Commun. 2007;356:323.

Sabet R, Mohammadpour M, Sadeghi A, Fassihi A. Eur. J. Med. Chem. 2010;45: 1113.

Vine KL, Locke JM, Ranson M, Pyne SG, Bremner JB. Bioorg. Med. Chem. 2007;15: 931.

Vine KL, Matesic L, Locke JM, Ranson M, Skropeta D. Anti-cancer agents. Med. Chem. 2009;9:397.

Sabet R, Mohammadpour M, Sadeghi A, Fassihi A. QSAR study of isatin analogues as in vitro anti-cancer agents. Eur J Med Chem. 2010;45:1113–1118.

Raj K. Prasada, Narsinghanib T, Sharmab R. QSAR analysis of novel N-alkyl substituted isatins derivatives as anticancer agents. J Chem Pharm Res. 2009;1:199-206.

Elidrissi B, Ousaa A, Aouidate A, Zaki H, Ajana MA, Lakhlifi T, Bouachrine M. 3D-QSAR studies of isatin derivatives with anti-cancer in vitro: Advanced CoMFA, CoMSIA and docking methods. Chem Sci J. 2017;8(2):158.

Siedlecki W, Sklansky J. On automatic feature selection. Int. J. Pattern Recog. Artif. Intell. 1988;2:197-220.

Leardi R. Genetic algorithms in chemometrics and chemistry: A review. J. Chemometrics. 2001;15:559-569.

Sabet R, Fassihi A, Saghaie L. Octanol-water partition coefficients determination and QSPR study of some 3-hydroxy pyridine-4-one derivatives. J Pharm Res Int. 2018;22:1-15.

Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph Model. 1996;14(1):33-41.

Fereidoonnezhad M, Faghih Z, Mojaddami A, Sakhteman A, Rezaei Z. A comparative docking studies of dichloroacetate analogues on four isozymes of pyruvate dehydrogenase kinase in humans. Indian J Pharm Educ. 2016;50(2):S32-S8.

Mirjalili BF, Zamani L, Zomorodian K, Khabnadideh S, Haghighijoo Z, Malakotikhah Z, et al. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives. J. Mol. Struct. 2016;1116:102-110.

Li Z, Gu J, Zhuang H, Kang L, Zhao X, Guo Q. Adaptive molecular docking method based on information entropy genetic algorithm. Applied Soft Computing. 2015;26:299-302.

Reddy S, Pallela R, Kim D, Won M, Shim Y. Synthesis and evaluation of the cytotoxic activities of some isatin derivatives. Chem Pharm Bull. 2013; 61(11):1105–1113.

Evdokimov N, Magedov I, McBrayer D, Kornienko A. Isatin derivatives with activity against apoptosis-resistant cancer cells. Bioorg Med Chem Lett. 2016;26(6):1558-1560.

Ibrahim HS, Abou-Seri SM, Ismail NS, Elaasser NM, Aly MH, Abdel-Aziz HA. Bis-isatin hydrazones with novel linkers: Synthesis and biological evaluation as cytotoxic agents. Eur J Med Chem. 2016; 108:415-422.

Akgül Ö, Tarıkoğulları AH, Aydın Köse F, Kırmızıbayrak P, Pabuççuoğlu M. Synthesis and cytotoxic activity of some 2-(2,3-dioxo-2,3-dihydro-1H-indol-1-yl)acetamide derivatives. Turkish J Chem. 2013;37:204–212.

Vine K, Locke J, Ranson M, Pyne S, Bremner J. In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg Med Chem. 2007;15(2):931– 938.

Priyanka KB, Manasa C, Sammaiah G. Synthesis and evaluation of new isatin derivatives for cytotoxic activity. J Pharm Pharm Sci. 2013;3(2):2393-2402.

Krishnegowda G, Gowda AP, Tagaram HR, Staveley O, Irby RB, Sharma AK, Amin S. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway. Bioorg Med Chem. 2011;19(20):6006-6014.

Farooq M, Almarhoon ZM, Taha NA, Baabbad AA, Al-Wadaan MA, El-Faham A. Synthesis of novel class of N-alkyl-isatin-3-iminobenzoic acid derivatives and their biological activity in zebrafish embryos and Human cancer cell lines. Biol Pharm Bull. 2018;b17-00674.

Beckman K. Isatin derivatives as inhibitors of microtubule assembly [Thesis]. Kansas: University of Kansas; 2008.

Olah M, Bologa C, Oprea TI. An automated PLS search for biologically relevant QSAR descriptors. J. Comput. Aided Mol. Des. 2004;18:437-449.

Franke R, Gruska A. Chemometrics Methods in molecular design, in: H. van Waterbeemd, (Ed.), Methods and Principles in Medicinal Chemistry, VCH, Weinheim. 1995;2:113–119.

Kubinyi H. The quantitative analysis of structure-activity relationships, in: M.E. Wolff, (Ed.), Burger’s Medicinal Chemistry and Drug Discovery, 5th Ed.; Wiley, New York. 1995;1:506-509.

Brereton R. Chemometrics data analysis for the laboratory and chemical plant. Wiley. 2004;47–54.